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Panorama Technologies

Preface

This book presents a hierarchy of modeling, migration, and inversion algorithms in a
geometrical rather than a mathematical sense. The focus is on using simple geometrical
concepts and graphical displays to explain how modeling works, how migration is in
reality just a different way of doing modeling, and why true full waveform inversion
must ultimately be a sequence of migrations of differences between synthetic and
real data. While we do not shy away from purely mathematical explanations of the
technology, the idea is to attempt to present the material in a manner accessible to the
widest possible audience.
After presenting the fundamental concepts, we turn our attention to a thorough
understanding and comparison of the myriad of modeling and migration algorithms.
Again, the major interest is not on the mathematical details but on a visual comparison
of a large number of examples and case studies.
In addition to practical comparisons, we also attempt to ensure that you get a reasonable
understanding of how modern advanced technologies can be applied to reduce
exploration risk. This necessarily includes an overview of the best approaches to
producing the best possible result from any given migration or modeling algorithm. This
necessarily implies a focus on techniques for estimating the underlying Earth model so
necessary for producing accurate images.
The course underlying this book was initially developed as a tutorial for seismic
interpreters working to identify, map, and develop potential hydrocarbon filled traps.
Working on the extremely practical side of the exploration process, seismic interpreters
have very little incentive to focus on the more mathematical aspects of how seismic data
is imaged. Thus, this book is aimed at an audience with some familiarity with seismic
images and their explanation relative to the underlying geology. Hopefully, you will
learn where and when to use the right applied technology to produce the best possible
exploration result.
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Chapter1
Introduction

The word migration as it applies to seismic imaging is definitely a misnomer. It is
believed to have arisen because oil migrates up dip since it is less dense than water.
This knowledge proved to be exploration dynamite. Once understood, explorationists
exploited it by looking for anticlines rather than synclines—and the California fields
around the Brea tar pits became history. Analogously, dipping events on unmigrated
seismic sections move up-dip on the final imaged or migrated section, so using the term
migration in place of the more accurate imaging terms was quite natural.
It is also quite natural to think of seismic migration as being somewhat akin to
photographic imagery. An image is captured, either digitally or on film, by recording
the result of passing a reflected source of light (the sun or artificial light) through a
properly focused lens on a photographic plate, film, or charge coupled device (CCD).
This works because light travels in a straight line at a known constant speed and the
lens, when focused, refracts the light to collect it in the proper place on the plate or CCD.
We can think of this process in three steps. First, the light wavefield travels out from the
source in all directions until it strikes a non-transparent reflector. Second, the reflected
wavefield passes through the lens to form the image. Third, the camera’s shutter
captures an instant in time to record the final image. It is safe to say that radar imagery
operates in much the same way and the only real difference lies in the construction of
the “lens.”
However, seismic migration differs from the photographic process in many ways. Sound
replaces light (or radar or electro-magnetic sources) as the imaging source, and the speed
of sound in subsurface rocks is definitely not constant, and it cannot be assumed to travel
in a straight line. Moreover, as we will see later, each and every sound source, regardless
of type, may generate three different, but coupled, wavefields as the energy spreads. As
far as the author knows, there is no simple seismic analogy to the photographic lens.
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Perhaps a better way to say this is that the lens for each seismic imaging effort is
essentially unique to that effort. In a sense, this observation is the most crucial difference
between imaging with sound and imaging with light. In the former case, we must
somehow estimate the lens during the seismic imaging process. This lens is called the
Earth model. In its simplest form, an Earth model is a three-dimensional velocity field
that describes the subsurface speed of a compressional sound wavefield. In simple terms,
a compressional wave is one wherein the particle motion occurs along the direction of
propagation and represents a compression followed by a rarefraction of the particles. In
its most complex form, an Earth model also includes the sound speeds of two additional
waves called shear waves because the particle motion is perpendicular to the direction
of propagation. An Earth model may also include other rock properties that influence
the way in which sound propagates through the earth, but those will be of little interest
here.
Seismic imaging can be considered to be a data-processing technique that creates an
image of the earth’s structure from the data recorded by a seismic reflection survey.

Target audience

This book and the complementary course are intended for an audience that requires
a less mathematical understanding of migration and modeling than what might be
required of advanced graduate students and researchers in the field. In the author’s
mind, this includes geophysicists and geologists who desire a fundamental principles
understanding of these topics as well as a practical perspective as to where and how they
may be applied for exploration advantage. We hope that, in spite of this objective, you
come away with a much broader understanding of both modeling and migration as well
as their application in the development and estimation of the Earth model.

Overview

Because modeling, as highlighted in this book, is so central to our ability to image, we
emphasize our reasons why we believe it should become a key component to any and all
exploration projects. For this, we rely on early (1936) modeling work by F. Rieber, as
well as recent work by Carl Regone, J.T. Etgen, and others from British Petroleum, and
the 2005 SEG Summer Research Workshop in Salt Lake City, Utah.
Three types of Earth models characterize the propagation of sound waves in the
Earth. Such models range from an overly simple acoustic model, which only supports
compressional waves, to anisotropic models that also support two coupled shear
waves. Acoustic models are sometimes also referred to as isotropic models, but we
will reserve that designation for isotropic elastic models. An isotropic elastic model
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supports both compressional and shear waves, but the velocity of these waves is
independent of the propagation angle. When the propagation velocity varies as a
function of angle, the Earth model is said to be anisotropic. Anisotropic Earth models
support one compressional and two shear waves. Thus, anisotropic Earth models contain
three velocity models: one for the compressional wave, and one for each of the shear
waves. Although we can think of anisotropic models in terms of three velocity fields, you
should be aware that connections between the three propagation fields can be extremely
complex.
The book will briefly consider sources other than sound, but since they focus on seismic
migration, we ultimately are only interested in acoustic sources.
Defining the sound source and explaining its utilization to measure a synthetic seismic
experiment may be the most important component of this book. We use Newton’s second
law in conjunction with Hooke’s law to produce simple propagation equations that allow
us to explain a significant percentage of the rather large number of migration algorithms
that exist today.
At its best, the current ad-hoc approach for developing an acceptable seismic Earth
model for imaging purposes rarely provides the necessary reflectivity required by
modeling. What appears to be lacking is an understanding of how the seismic image
relates to this reflectivity, so we emphasize how the needed reflectivity might be
obtained.
The mathematics underlying modeling also underlies migration and, consequently, has a
major impact on the acquisition geometry. The kind of data we should acquire versus the
kind of data we have historically acquired is discussed in terms of optimizing migration
quality.
In the belief that understanding migration is facilitated by first focusing on the simplest
forms of migration, we briefly review rather quaint stacking and dip correction
approaches for the production of so-called zero offset sections. We then use poststack
imaging methods as they apply to stacked data sets to compare several algorithms from
what we define as the migration hierarchy, and finally we move on to more modern
prestack methods. These methods are applied to a wide variety of real and synthetic data
in a visual, subjective attempt to evaluate the migration hierarchy’s ability to produce
high quality images.
Because of its clear importance, modern velocity analysis is explored in some detail.
We review three different approaches producing the kinds of migration output that
facilitate velocity analysis and estimation of Earth models. We provide a short review
of tomographic updating. Finally, we demonstrate the conditions under which full
waveform inversion might be expected to produce high quality results.
The book ends with a series of case studies designed to demonstrate the relative accuracy
of the various algorithms comprising what we call the migration hierarchy.
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Inversion

Estimating the appropriate lens for seismic migration is an exercise in inversion. This is
a mathematical process by which data are used to generate a model that is consistent
with the data. The most desirable outcome of a seismic inversion process would be an
Earth model with sufficient detail to describe all information necessary to optimize the
exploration workflow. The most comprehensive mathematical formulation of inversion
provides a complete platform for estimating this information. The inversion technique
iteratively combines modeling with migration to directly estimate the Earth model. At
each step of what may be many iterations, the difference (the residual) between the
modeled data and the recorded data is migrated to estimate a new model. When the
migrated residual is zero, synthetic data generated using the estimated Earth model
perfectly matches the recorded data and consequently the model is considered optimal.
One of the earliest practical tests of this so-called full-waveform inversion was an
abysmal failure. Nevertheless, today, the good news is that, in a perfect setting, this
process really does work. The bad news is that currently available seismic data do not
entirely satisfy the mathematical requirements necessary for success.
Until recently, the modeling piece of this inversion process was by itself considered
far too computationally intensive to be practical. It may also be true that the actual
concept of synthesizing data over some perceived geologic model was considered to be
of little practical use. However, computer power is rapidly approaching the point where
modeling may not only be practical, but may even be of use in providing empirical
answers to questions that are difficult to answer in any other way. While it may not be
computationally possible to perform the iterative inversion described in the previous
paragraph, computer power is quickly reaching the point where we may be able to
consider doing the inversion for carefully selected projects.

Velocity Analysis

When concise mathematical recipes for optimal estimation of the Earth model are not
practical, other more practical methods must be devised and exploited. In the last
twenty-five years, a wide variety of somewhat ad-hoc velocity estimation methods
have emerged and are currently used to provide reasonable estimates of the seismic
lens. The importance of migration as a tool in this approach cannot be overestimated.
But traditional, normal-moveout based methods applied after migration, together with
tomographic techniques, have proven to be quite useful when the more optimum and
concise methods fail.
How well these human-intensive techniques work are somewhat dependent on how the
input data is processed. Thus, the person actually attempting to estimate the Earth model
must recognize that some so-called “best practices” approaches are not amenable to the
production of high quality results.
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Modeling

A superficial glance at the inversion process seems to imply that we need two pieces of
machinery to make it work; that is, we need to understand how to synthesize the kind
of data we record (modeling), and we need to understand how to migrate it. What is
really true, however, is that the only thing we really need to understand completely is
how to perform the modeling, since migration is actually just two independent modeling
exercises. To fully appreciate how modeling appears in the imaging process requires
considerable mathematical theory and physical principles. However, there are just two
fundamental principles on which modeling is based. The first, Newton’s second law, is
easily understood from a purely physical point of view. You experience it every time you
accelerate in a car. The second, Hooke’s law, is somewhat more difficult to understand,
but is still quite easy to explain in simple one-dimensional terms. The combination of
these two principles effectively provides us with a simple propagation methodology
that is easily explained graphically and that provides the basis for making modeling and
migration accessible with minimal mathematical symbolism.
Given that modeling is fundamental to seismic imaging, we obviously must put
considerable emphasis on understanding how it works and the many variations of how
it is implemented. In addition, it is of considerable interest to understand the types and
style of Earth models that we may wish to investigate.
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Chapter2
Seismic Modeling

This chapter presents information about seismic modeling. Topics range from why we
perform modeling in the first place through a brief overview of the mathematics involved
in several different types of modeling.

Primary Concerns

One primary concern in seismic imaging necessarily focuses on determination of the
true subsurface medium. Clearly, the accuracy of this information significantly impacts
all aspects of the exploration process. Even when we do not have a completely detailed
visualization of what is below us, a reasonable concept can provide guidelines for surface
acquisition that improves subsurface imaging. The underlying Earth model strongly
influences what we must do to migrate the data successfully and produce an optimum
image.
Another primary concern focuses on which of the myriad available imaging algorithms
has the best chance of producing the highest quality image. Making this choice
requires an understanding of the most important such technology. Because algorithm
development and implementation is a highly mathematical endeavor, acquiring this
understanding can be quite difficult.
A third concern arises from the fact that, in general, the Earth does not respond well to
high frequency sources since high frequency sound waves are absorbed rather quickly.
Depending on rock type they penetrate only to a few thousand meters. On the other
hand, low frequency sound waves are known to provide narrow bandwidth images at
depths in excess of 30 or 40 kilometers.
Electromagnetic waves are frequently characterized by their penetration depth or
their so called skin temperature. Although claims to the contrary abound, the skin
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temperature of most electromagnetic waves is only on the order of a few hundred
meters. This means that to the extent possible, changes in magnetic parameters can
be observed only from approximately half of this depth. This is far too shallow to be
of much use in exploration. This lack of ability to penetrate deeply into the Earth’s
interior eliminates most high frequency sources, and strongly implies that we cannot use
light, electromagnetic, or radar sources to measure and image the Earth at the depths of
interest.
Because of these issues, our best option is to use relatively low frequency sound sources
on the order of a few hundred Hertz. When higher frequency sources are routinely
available, their responses will be easily incorporated into the general imaging workflow,
but until that happens, we must focus on low frequency data sets to achieve our
exploration goals. We now know that, from an inversion point of view, accurately
determining the subsurface velocity is easier when the low frequency portion of the
frequency band is full. High frequencies are certainly important but have much less
impact on the velocity estimation problem then lower frequencies. While somewhat
contrary to intuition, the importance of very low frequency data cannot be denied.
Perhaps the final concern in seismic imaging is having a clear understanding of how
sound propagates. Given a decent understand of the types of rocks we may encounter,
this concern can be resolved directly through seismic synthesis or modeling. The ability
to generate realistic responses to practical and physical seismic sources should move us a
long way down the path toward near optimal application of the entire imaging process
Given these simple concerns, this section attempts to use mathematically based
formulations for digitally synthesizing seismic data in the hopes that the issues raised
above can be clarified in a relatively simple and intuitive manner.
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Three Earth Models

Earth models, as we understand them, have the following three basic formulations:
• purely isotropic or acoustic
• isotropic elastic
• anisotropic

Acoustic or Fluid

Earth models, as we understand them, have three basic formulations. The first is
what we usually call purely isotropic or acoustic. Acoustic models are based on the
assumption that the only physical parameters defining wave propagation are density,
𝜌(𝑥, 𝑦, 𝑧), and interval or instantaneous velocity 𝑣(𝑥, 𝑦, 𝑧). Only fluids can be described by
these two properties, but because propagation in such environments can be simulated
efficiently, they are the most prevalent at this writing. Empirical evidence also seems
to suggest that in many geologic settings the real Earth does not vary much from this
assumption.

Isotropic Elastic

Isotropic elastic models are described by density, compressional velocity, and shear
velocity. The notation for these parameters is 𝜌(𝑥, 𝑦, 𝑧), 𝑣𝑝(𝑥, 𝑦, 𝑧), and 𝑣𝑠(𝑥, 𝑦, 𝑧). Isotropic
elastic models support two wavefields, one of which is a compressional wave and the
other is a shear wave. Compressional waves in such models are identical to those in
acoustic models. They are characterized by particle motions consistent with what might
be called compression and rarefaction where the particle vibrations are normal to the
direction of propagation. In contrast, we tend to think of waves where the the particle
motion is tangential to the direction of propagation as shear waves. As a point of fact,
the truth is probably somewhat different. Simulations tend to support the conclusion
that the compressional wave is what we would record if we were to measure purely
vertical particle motion and the shear wave is the one characterized by purely horizontal
particle motions. The speed of shear waves is frequently much slower then the velocity
of the compressional wave. Nevertheless, shear and compressional waves continually
interact and convert from one to the other as the propagation progresses. Thus, if we
are to successfully handle isotropic elastic data, we must acquire something at least
directly related to the vertical and horizontal particle motions. In other words, we have
to acquire vector data.
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Anisotropic

Anisotropic models represent the Earth at its most complex. For our purposes, a
model is said to be anisotropic whenever the sound speed is a function of the angle
of propagation. In models of this type, not only does the velocity of sound vary with
propagation angle, but there are three possible propagating modes at any given instant.
One is our familiar compressional wave and the other two are shear waves, each of
which propagates with its own local angle-dependent velocity profile.
Over the last 20 or so years we have come to specify what we might call the first
realistic anisotropic models by density 𝜌(𝑥, 𝑦, 𝑧), vertical velocity 𝑣𝑝(𝑥, 𝑦, 𝑧), shear
horizontal velocity 𝑣𝑠(𝑥, 𝑦, 𝑧) and three additional parameters, 𝛿(𝑧, 𝑦, 𝑧), 𝜀(𝑥, 𝑦, 𝑧), and
𝛾(𝑥, 𝑦, 𝑧) . Models described by these “Thomsen” parameters are the so called vertically
transverse isotropic or VTI models. Anisotropic VTI models have a very convenient
form of symmetry that makes using them somewhat easier and less computationally
complex then more complex versions of anisotropy. It is reasonable to expect anisotropic
models to become the norm in future exploration exercises. In this case true anisotropic
processing will also require the acquisition of vector data. The difference between this
and isotropic elastic acquisition is that each vector has three components.

Summary

Regardless of the source we use, the Earth’s response always contains compressional and
at least one, but most probably, two shear wavefields. Thus, the expected Earth model is
quite complex. While we may not have the ability to estimate the necessary parameters
to image the recorded multicomponent data, there are many algorithms for doing so. It
makes sense to at least understand the kinds of data we might expect to record and what
it might look like. The basic idea of using modeling to help us understand the recordings
has a significant history in the exploration for hydrocarbons. As this book progresses, we
will attempt to define the various models currently in vogue and make some additional
comments about how the required parameters might be estimated from our acoustical
recordings.

10 Modeling, Migration and Velocity Analysis



Panorama Technologies Seismic Acquisition: The Basic Idea

Seismic Acquisition: The Basic Idea

The basic idea underlying seismic acquisition is shown in Figure 2-1. The application
of a sound source at a fixed point on the surface of the Earth produces a down-going
wavefield. As the wavefield propagates, it is, hopefully, reflected as an up-going
wavefield that is recorded on a series of receivers located near the surface. The job
of modeling is to simulate this thought experiment as accurately as possible. From
a physical point of view the model is viewed as a collection of particles that move
(compress and expand or shear) under the influence of the sound source. As we can
easily infer from Figure 2-1 such compression and rarefaction can be quite complex and
occur in any direction at any given time instant.
As we progress through this book, we will see that there are many approaches to
synthesizing seismic data in both simple and complex Earth models. Each approach is
based on a unique approximation to a governing wave equation. Each approximation has
its own unique set of limitations that compromises the accuracy of the final synthetic.
In the past, these approximations were a necessary evil fostered by the computational
limits of the era. The list of questions posed in Figure 2-1 hint at some of the limitations
of the various approximations. Ranging from algorithms based on rays (infinitely narrow
paths), to wavefields that travel in only one direction, and then to wavefields traveling
in all directions, these limitations can have a serious impact on the quality of both the
modeling and the migration algorithm under consideration. As computers become more
and more efficient, these compromises will fall by the wayside and be fully replaced by
the most accurate method available for the given data.

Figure 2-1. The basic seismic acquisition concept.
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Why Model?

Modeling is fundamental to imaging, and I hope to convince you that modeling and
migration are identical; that is, if you know how to do one, you know how to do the
other. Consequently, it is extremely important that you understand how to synthesize
seismic responses that are as close as possible to what we physically measure in the real
world.

Determining Reflector Location

Before computers, simple straight-ray methods were used to determine the important
parameters involved in figuring out the true sub-surface location of recorded reflected
events. Figure 2-2 demonstrates the process.

Figure 2-2. Raytracing in a 𝑣(𝑧) medium.

Computing the ray direction from one layer to the next requires adherence to Snell’s
law, Equation 2-1 or Equation 2-2. See the section on Curved Rays in Chapter 3 for
information about Snell’s law.
(2-1) sin 𝜃􏷠

sin 𝜃􏷡
= 𝑣􏷠
𝑣􏷡

(2-2) sin 𝜃􏷠
𝑣􏷠

= sin𝜃􏷡
𝑣􏷡
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Thus, the only required elements for this form of modeling are the ability to compute the
sine of angles, a ruler, and perhaps a protractor. What is important is that for a given
source on the surface the normal incident ray that travels from the source to a reflector
and back to the source-receiver location is uniquely determined by either the dip of the
reflector or by the takeoff angle at the surface.
As we will see, this particularly simple concept is fundamental to both migration and
modeling. We can estimate what we call apparent dips from seismic sections, and then
compute the true dip of the reflector, along with a given velocity. Simultaneously, we
can compute the surface distance from the given shot point to the surface projection of
the subsurface reflector location, thereby constructing a “migrated” image.

Geologic Complexity

Perhaps the earliest and one of the most compelling reasons for modeling was presented
by Frank Rieber’s in his 1936 Geophysics paper. Quoting Rieber:

The usual form of reflection seismograph operates satisfactorily over
simple structural conditions, but frequently fails to obtain part or all of the
desired information when structures are steeply folded, faulted or otherwise
complicated. The reasons for this are plainly evident if the paths of the waves
in the earth can be visualized.

In other words, he is saying that when the geology is simple, the reflection seismogram is
easy to unravel, but when the geology is complex, it is difficult. He is also saying that if
we can model complex structures, we may be able to better understand the problem and
then develop technologies to resolve it. From my perspective, the most amazing thing is
that he proceeds to do exactly that:

This has been done by the use of a technique originally developed for
acoustical measurements.
A new type of equipment and technique are briefly described, with which
exploration may be carried into the more complex structural regions
successfully.
A miniature explosion radiates waves into various models of structure, where
reflection and diffraction take place in the same manner as in the earth. The
various moving waves are actually photographed in flight. A series of plates is
presented, showing wave patterns in various types of structures, ranging from
simple to complex.
Briefly, the technique is one of shadow photography, no lens of any sort
being employed. A bright electric spark, lasting only about one millionth of
a second, is spaced about four feet from a photographic plate. The model of
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the structure to be investigated is placed part way between the spark and the
plate, in such a position that its shadow will be photographed.
If no sound waves are present in the field between the light source and
the plate, the shadow of this model will be the only thing shown in the
photograph. The rest of the field will be uniformly exposed to the light from
the spark and will correspondingly show uniform photographic density.
If an abrupt sound wave happens to be passing through the field, however,
the light from the spark will be bent slightly at the places where it passes
through the denser air of the wave front. This bent light will be superposed
upon other illumination arriving directly on the plate from the spark, thereby
causing a dark line. The part of the plate from which the bent light was
diverged will show, correspondingly, as a lighter line.

Thus, Rieber explains why he thinks modeling is important, and then proposes a solution
to both the modeling and the visualization problem. The why in Rieber’s case was to
figure out how to interpret seismic shot records that were considered uninterpretable at
the time. In the 1930’s, tedious hand calculations were the only available methods for
placing an event on a shot record at its correct (or nearly correct) subsurface position.
These early migration methods were not well suited to positioning anything but simple
reflected events. While the response of a syncline was not difficult to unravel, what
Rieber’s paper showed was that the so-called “no record zones” were in reality areas with
even moderately complex geology. Salt structures of the size and shape we see today
were generally figments of the imagination.
Figure 2-3 demonstrates the validity of Rieber’s shadow method. Figure 2-3(a)
shows that the response of a truncation in an otherwise constant velocity medium
is a diffraction. This is a circular event that could have easily confused the typical
inexperienced interpreter of the day. Part (b) shows the downward traveling wave on
the edges along with the reflected wave in the center for a faulted structure. Note the
clear diffractions on the left-hand side of this graphic. It is one of several similar Rieber
graphics that clearly demonstrate the success of his technique. The left half of this
figure shows a snapshot of the response from a syncline at some time after the explosion
at the center of the image. The right half is a snapshot at a later time. What we see,
particularly on the top half of the figure, is the characteristic bow-tie reflection from the
syncline.
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Figure 2-3. Rieber’s shadow graphs of the response of simple geologic structures.

(a). Reiber’s snapshots of the response of truncated structures.

(b). Reiber’s snapshots of the response of a syncline

At the time of Rieber’s research, the complexity of the seismic response was not well
understood, and, consequently, detecting or even recognizing dip on these records was
problematic. Figure 2-4 shows that Rieber understood this as well, and formulated a
method for more or less automatic detection of the associated dips. It represents what
is believed to be one of the first ever utilization’s of what is now called slant stacking.
Note that it is applied to a shot record and really detects the angle at which the given
reflection emerges. The dip detector first estimates the emergence angle of a reflected
wavefield at the receiver locations, which can be computed from 􏸷𝑡

􏸷𝑥
= 􏸒􏸈􏸍 𝜃

𝑣
. Given

the emergence angle and the velocity of the wavefield (which was assumed constant in
Rieber’s day), we can directly calculate the location and dip of the reflector from which
the wavefield came. As we will see in later chapters, this emergence angle data and the
directly related subsurface dip are crucial in all modern migration methodologies.
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Figure 2-4. Rieber’s approach to detecting dip.

Hypothesis Testing

A more modern reason behind data synthesis is what can be called hypothesis testing. An
example of this is displayed in Figure 2-5. The left hand side of this figure is an arbitrary
line slice taken through a 3D prestack depth migration of a seismic data set from the Gulf
of Mexico survey. It was chosen to be as close as possible to a true dip line. The right
graphic is an image constructed from 2D isotropic elastic data synthesized over a 2D
structure constructed from the 3D migration velocity field along with top and base salt
interpretations.

Figure 2-5. Modeling multiples.

When mapped in 3D, the circled amplitude package appears to define a stacked set
of hydrocarbon bearing reservoirs with significant potential. Thus, the hypothesis in
this case is that the package is a valid prospect. To test this hypothesis, a 2D acoustic
Earth model was constructed. The model velocity was taken to be the migration velocity
with a top and base of salt used to define the salt body. Although not shown, the model
includes shear velocities below the water layer, and, consequently, some converted
waves have been imaged on the section.
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The right side of Figure 2-5 shows the result of the modeling under the assumption that
the surface of the water is not reflective. Thus, any repetitive events cannot be from
water column multiples. The clear evidence of multiple amplitudes in a setting where
such amplitudes cannot be due to the water layer, confirms the hypothesis that the
amplitudes are from peg-leg multiples or converted ray events.
There are, of course, many other ways to utilize modeling to answer various hypotheses
that are not directly related to verifying that some event or anomaly is noise. We can
also build models to compare various alternative model parameters in an attempt to
quantify observed amplitude versus offset or amplitude responses. In a subsequent
section on full waveform inversion, we will demonstrate the importance of low
frequency acquisition in the specification of the earth velocity field.

Acquisition

An important recent utilization of modeling by Carl Regone at BP dealt directly with
trying to verify that wide azimuth acquisition is superior to narrow acquisition. What
these studies showed was that, as actually assumed by the mathematics, wide azimuth
acquisition produces superior results in all settings. We will investigate this issue in the
chapter on Data Acquisition.

Waves and Wavefields

As described in Figure 2-6, wavefields are characterized and described by several well
known terms:

• 𝑓 = Frequency = cycles/second
• 𝜔 = Angular Frequency = radians/second = 2𝜋𝑓
• 𝑣

𝑓
= Wavelength = meters/cycle

• 𝑘 = 𝜔
𝑣
= Temporal Wave Number

• 𝑘𝑥 = Spatial x (XLINE) Wave Number
• 𝑘𝑦 = Spatial y (LINE) Wave Number

Figure 2-6. A single frequency sinusoid (wavefield) with amplitude 𝐴(𝑥, 𝑦, 𝑧, 𝜔)
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These terms completely characterize wavefields in space-time, frequency-space, and
frequency-wavenumber. We can think of wavefields as actually being the sums of
sinusoidal style waves having the general form of Equation 2-3, where 𝐴 = 𝐴(𝑥, 𝑦, 𝑧, 𝜔 =
2𝜋𝑓) is a positive amplitude as a function of spatial position (𝑥, 𝑦, 𝑧) and frequency, and
𝜑 = 𝜑(𝑥, 𝑦, 𝑧, 𝑡) is the so-called wavelet phase.

(2-3) 𝑈(𝑥, 𝑦, 𝑧, 𝑡) =􏾝
𝜔

𝐴􏿮cos(𝜔𝑡 + 𝜑) + 𝚤 sin(𝜔𝑡 + 𝜑)􏿱

The main point is that the wavefields actually exist in three-dimensional space-time
and can be characterized in many different ways. While we cannot record the full three
dimensional response of any given source, the wavefield due to such a source is in fact
four dimensional and effectively exists at each point where energy from the source exists.
In this book, we will mostly be concerned with wavefields measured on one surface,
typically where 𝑧 = 0. But, as is the case for VSPs, we also record seismic wavefields at
locations with 𝑧 > 0.
Figure 2-7 further clarifies what we mean by Equation 2-3. As any given sinusoid
propagates through the Earth, its wavelength and amplitude change as functions of both
reflection strength and sound speed. Although not shown in the figure, these quantities
can also change purely as a function of the material through which they are propagating.

Figure 2-7. Wavefield in space at two different velocities. Note that the
wavelength and the amplitude can change purely as a function of
velocity.
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The Scalar Wave Equations

From the author’s perspective, current state-of-the art practice in digital synthesis of
seismic wavefields is usually based on one of four wave equation styles.

• The simplest style is called the scalar wave equation governing particle motion.
Traditionally, this equation involves only compressional style waves and provides
a wavefield describing particle motion; density is assumed constant.

• The first and second order formulations of what is usually referred to as the stress-
strain equations can synthesize both compressional and shear wave data, although
at considerable expense in 3-D. Thus, in this case, the equations govern what can
be considered vector propagation. In the simplest case, there are two wavefields,
one compressional and one shear. In the more complex case, there are three
wavefields, one compressional and two shear. The stress-strain versions are clearly
the most interesting because they allow for the most complex anisotropic wavefield
propagation methods.

• The pressure formulation of the wave equation includes density in a form that can
be used directly for synthesizing marine style acquisition.

The 1-D Scalar Wave Equation

In this section, we derive a simple one-dimensional version of the so-called scalar wave
equation. Wavefields satisfying the various forms of the wave equation are currently
our best guess as to how low-frequency-sound energy propagates through the Earth.
As we will see, different media require specialized equations, but the basic synthesis or
modeling principles remain remarkably similar.
We can gain insight into how particle movement (wave propagation) is governed by
considering a simple one-dimensional model. We will start by thinking of the media as a
series of discrete particles loosely connected by some form of restraint. Figure 2-8 shows
a series of masses, 𝑚, connected together through a series of springs under tension, 𝑘. A
source at one end of the chain creates a wavefield that travels up and down the chain.

Figure 2-8. A simple one-dimensional model.

If a force is applied at one end of this one-dimensional model, the mass 𝑢(𝑥) at 𝑥 reacts
with and is acted on by masses 𝑢(𝑥 − ℎ) and 𝑢(𝑥 + ℎ). Each such mass accelerates and
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decelerates as the wavefield generated by the source propagates up and down the model.
Note that, although we have suppressed it in the notation, the fact is that 𝑢(𝑥) = 𝑢(𝑥, 𝑡).
In general, we think of each of the masses, 𝑢(𝑥), as particles that move back and forth as
time progresses. What we see is a wave passing up and down the model.
Describing particle movement is accomplished through the use of two fundamental
laws of physics, Newton’s second law of motion, that is, force is equal to mass times
acceleration, and Hooke’s Law.

In physics, Hooke’s law of elasticity is an approximation that states that
the amount by which a material body is deformed (the strain) is linearly
related to the force causing the deformation (the stress). Materials for which
Hooke’s law is a useful approximation are known as linear-elastic or Hookean
materials.

In mathematical form, Newton’s law is given in Equation 2-4, where 𝑎 is acceleration and
𝑚 is the particle mass.
(2-4) 𝐹 = 𝑚𝑎

The force caused by acceleration is what you feel when you step on an automobile’s
accelerator. In the context of Figure 2-8, acceleration is the rate of change in velocity
with respect to time. Thus, for the particle at 𝑢(𝑥), Newton’s second law becomes
Equation 2-5, where 𝜏(𝑥, 𝑡) is the force per unit area, or stress, at 𝑥.

(2-5) 𝜏(𝑥, 𝑡) = 𝑚􏿰
𝑣(𝑥, 𝑡 + Δ𝑡) − 𝑣(𝑥, 𝑡)

Δ𝑡 􏿳

The fact that the velocity is the change in particle position as a function of time yields
Equation 2-6, and, thus, Newton’s law can be written as Equation 2-7.

(2-6) 𝑣(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡 − Δ𝑡)
Δ𝑡

(2-7) 𝜏(𝑥, 𝑡) = 𝑚􏿰
𝑢(𝑥, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − Δ𝑡)

Δ𝑡􏷡 􏿳

For our purposes, Hooke’s law can be rephrased as:

A change in force per unit length (area or volume in higher dimensions) is
equal to the bulk modulus times the increase in length divided by the original
length.

20 Modeling, Migration and Velocity Analysis



Panorama Technologies The Scalar Wave Equations

Because of the way in which our small particles of mass are arranged, the force 𝜏(𝑥, 𝑡) =
𝐹(𝑥,𝑡)
ℎ
per unit length is really determined by the action of the particles adjacent to

position 𝑥. Hooke’s law can be stated mathematically as Equation 2-8 or Equation 2-9.
𝜏(𝑥, 𝑡) = 𝜏(𝑥 + ℎ, 𝑡) + 𝜏(𝑥 − ℎ, 𝑡)(2-8)

= 𝑘 􏿰
𝑢(𝑥 + ℎ, 𝑡) − 𝑢(𝑥, 𝑡)

ℎ 􏿳 + 𝑘 􏿰
𝑢(𝑥, 𝑡) − 𝑢(𝑥 − ℎ, 𝑡)

ℎ 􏿳

(2-9) 𝑘ℎ􏷡

𝑚 􏿰
𝑢(𝑥 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ℎ, 𝑡)

ℎ􏷡
􏿳 = 􏿰

𝑢(𝑥, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − Δ𝑡
Δ𝑡􏷡 􏿳

If we suppose that there are 𝑁 masses (particles), each of density 𝜌, then the total length
is 𝐿 = 𝑁ℎ, the total mass is 𝑀 = 𝑁𝑚 = 𝜌, and the total stiffness of the array is 𝐾 = 𝑘/𝑁 , so
we get Equation 2-10.

(2-10) 𝑘ℎ􏷡

𝑚 = 𝐾𝐿􏷡

𝑀 = 𝐾𝐿
𝜌

Thus, in the limit as ℎ and Δ𝑡 approach zero, we get Equation 2-11. The quantity 𝐾𝐿 is
actually Young’s modulus of the medium containing 𝑚.

(2-11) 𝐾𝐿
𝜌
𝜕􏷡𝑢
𝜕𝑥􏷡 =

𝜕􏷡𝑢
𝜕𝑡􏷡

It turns out that the quantity 𝑣 = 􏽯
𝐾𝐿
𝜌
is the velocity of propagation within the medium,

and so we have succeeded in deriving what is normally called the one-dimensional wave
equation, Equation 2-12.

(2-12) 𝜕􏷡𝑢
𝜕𝑥􏷡 =

1
𝑣􏷡
𝜕􏷡𝑢
𝜕𝑡􏷡

It is interesting to note that if we combine Equation 2-7 and Equation 2-9, and then
rearrange the result in the form shown in Equation 2-13, we obtain an equation that
allows us to propagate a wavefield in the one-dimensional medium due to the source
𝑠(𝑥􏷟, 𝑡) at position 𝑥􏷟.

𝑢(𝑥, 𝑡 + Δ𝑡) = 2𝑢(𝑥 + ℎ, 𝑡) − 𝑢(𝑥, 𝑡 − Δ𝑡)(2-13)
+ 𝑣􏷡[(𝑢(𝑥 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ℎ, 𝑡)] + 𝑠(𝑥􏷟, 𝑡)

If we begin the discussion with both mass, 𝑚, and strain, 𝑘, as functions of position, 𝑥,
the velocity, 𝑣 = 𝑣(𝑥), of our one-dimensional wave equation will vary as a function of
position.
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It is clear from Equation 2-13 that propagation at each time step is achieved through
the application of appropriate weights to the wavefields at the two previous time steps.
In the case where velocity varies, the weights form a stencil and change for each spatial
position. The wavefield at time stamp 𝑡 + Δ𝑡 is computed starting at the left most spatial
position and continuing to the right.
Figure 2-9 demonstrates the process. Beginning at the left each spatial output point
amplitude is computed as a weighted sum of spatial points from the two previous time
steps, that is, 𝑡 + Δ𝑡. The stencil at 𝑡 is centered around the spatial output point at 𝑡 + Δ𝑡
so that waves can propagate in all directions.

Figure 2-9. Graphical interpretation of a one-dimensional propagator

Scalar Wave Equation in Higher Dimensions

Figure 2-10 shows a simple model in two dimensions. In this case, masses, 𝑚, are
connected by the equivalent of springs with tension 𝑘. A source placed as a point on the
grid creates a wavefield that travels up throughout the grid in all directions.

Figure 2-10. A simple two-dimensional model.
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Extending the one dimensional nature of Equation 2-12 into higher dimensions is not
difficult. We need only consider a two-dimensional grid of masses similar to the one-
dimensional grid in Figure 2-8. Our model now has an area 𝐴 = 𝐿𝑥 ∗ 𝐿𝑦, instead of length
𝐿, a total stiffness of 𝐾 = 𝑘

𝐿𝑥𝐿𝑦
, and total mass 𝑀 = 𝑚𝐿𝑥𝐿𝑦. Our discrete equation governing

wave propagation must accommodate particle motion in both the 𝑥 and 𝑦 directions, but,
in actuality, this really only involves Equation 2-9. Thus, if we follow our approach for
the one-dimensional discrete equation, Equation 2-13, we arrive at Equation 2-14.

(2-14) 􏿶
𝑢(𝑥, 𝑧, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑧, 𝑡) + 𝑢(𝑥, 𝑧, 𝑡 − Δ𝑡

Δ𝑡􏷡 􏿹 =

𝑘ℎ􏷡

𝑚 􏿶
𝑢(𝑥 + ℎ, 𝑧, 𝑡) − 2𝑢(𝑥, 𝑧, 𝑡) + 𝑢(𝑥 − ℎ, 𝑧, 𝑡)

ℎ􏷡
+ 𝑢(𝑥, 𝑧 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑧, 𝑡) + 𝑢(𝑥, 𝑧 − ℎ, 𝑡)

ℎ􏷡
􏿹

In more compact mathematical notation, the two-dimensional Equation 2-14 becomes
Equation 2-15.

(2-15) 𝜕􏷡𝑢
𝜕𝑡􏷡

= 𝑣􏷡
⎛
⎜
⎝

𝜕􏷡𝑢
𝜕𝑥􏷡 +

𝜕􏷡𝑢
𝜕𝑧􏷡

⎞
⎟
⎠

After following the same procedure for a three-dimensional grid, the three-dimensional
wave equation becomes Equation 2-16.

(2-16) 𝜕􏷡𝑢
𝜕𝑡􏷡

= 𝑣􏷡
⎛
⎜
⎝

𝜕􏷡𝑢
𝜕𝑥􏷡 +

𝜕􏷡𝑢
𝜕𝑦􏷡 +

𝜕􏷡𝑢
𝜕𝑧􏷡

⎞
⎟
⎠

Here, we have derived the mathematical wavefield equations for what is normally called
acoustic or pure isotropic modeling. In this case, the velocity was assumed constant, but
the difference between a constant velocity and variable velocity derivation is minor.
Equation 2-15 and Equation 2-16 are referred to as scalar wave equations because
there is only one wavefield, not a vector of two or more. Generally, the geophysical
convention is to assume that 𝑧 is the vertical or depth direction, but that is really just a
matter of convenience. We could just as easily have used 𝑥􏷠 for 𝑥, 𝑥􏷡 for 𝑦, and 𝑥􏷢 for 𝑧.
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Pressure Formulation of Acoustic Wave Equation

Without going into great detail, we can also derive a pressure formulation of the acoustic
wave equation (see Keiiti Aki and Paul G. Richards). This equation takes the form shown
in Equation 2-17.

(2-17) 𝜕􏷡𝑝
𝜕𝑡􏷡

= 𝜌(𝑥, 𝑦, 𝑧) 𝑣􏷡(𝑥, 𝑦, 𝑧)􏿰
𝜕
𝜕𝑥

1
𝜌(𝑥, 𝑦, 𝑧)

𝜕𝑝
𝜕𝑥 +

𝜕
𝜕𝑦

1
𝜌(𝑥, 𝑦, 𝑧)

𝜕𝑝
𝜕𝑦 +

𝜕
𝜕𝑧

1
𝜌(𝑥, 𝑦, 𝑧)

𝜕𝑝
𝜕𝑧 􏿳

In contrast to the particle motion described by Equation 2-16, Equation 2-17 measures
pressure changes at any given position. I like to call this the reflection formulation
because of the presence of the acoustic impedance term, 𝜌𝑣. This equation can be put
in the very compact form of Equation 2-18, where ∇ (the vector differential operator,
pronounced del) is given by Equation 2-19.

(2-18) 𝜕􏷡𝑝
𝜕𝑡􏷡

= 𝜌𝑣􏷡∇ ⋅ 1𝜌∇𝑝

(2-19) ∇ = 􏿶
𝜕
𝜕𝑥,

𝜕
𝜕𝑦,

𝜕
𝜕𝑧􏿹

Ultimately, we are interested in deriving equations for more complex fully elastic
wavefields, including anisotropic wavefields. These wavefields require more parameters
to describe the multiplicity of wavefields that exist in such media. Before increasing the
complexity of the discussion, we will focus on a graphical description of how discrete
modeling works, and then turn our attention to algorithms for implementing the actual
modeling exercise.

Stress-Strain Equations

As we know, isotropic elastic models are described by three familiar parameters: density,
compression velocity, and shear velocity. To model elastic wavefields in such three-
parameter media, we need to derive a suitable equation or set of equations that describe
the wavefield propagation at any given instant. Unfortunately, these three parameters
are not the most useful for this purpose. On the other hand, the required parameters are
much more directly related to actual rock properties. Moreover, relating the required
parameters to more useful quantities is fairly straightforward.
We begin (Equation 2-8 and Equation 2-7) by observing that Equation 2-20 is true, so
that Equation 2-21 is also true.
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𝐹(𝑥, 𝑡)
ℎ = 𝐹(𝑥 + ℎ, 𝑡) + 𝐹(𝑥 − ℎ, 𝑡)

ℎ(2-20)

= 𝑘 􏿶
𝑢(𝑥 + ℎ, 𝑡) − 𝑢(𝑥, 𝑡)

ℎ 􏿹 + 𝑘 􏿶
𝑢(𝑥, 𝑡) − 𝑢(𝑥 − ℎ, 𝑡)

ℎ 􏿹

= 𝜌 􏿶
𝑢(𝑥, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − Δ𝑡)

Δ𝑡􏷡 􏿹

(2-21) 𝜏(𝑥 + ℎ, 𝑡) − 𝜏(𝑥, 𝑡)
ℎ = 𝜌 􏿶

𝑢(𝑥, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − Δ𝑡)
Δ𝑡􏷡 􏿹

In continuous terms, Equation 2-21 can be restated as Equation 2-22.

(2-22) 𝜕𝜏
𝜕𝑥 = 𝜌

𝜕􏷡𝑢
𝜕𝑡􏷡

Equation 2-22 is a first order partial-differential equation relating a second order change
in time to a first order change in force per unit area. Force per unit area is generally
referred to as stress, so our equation relates particle acceleration to stress. In this setting,
the stress is one-dimensional and acts along or parallel to the layout of the string. There
is also only one compressional wavefield described by this equation.
Stepping up to the simple isotropic elastic models described by the three familiar
parameters above, means that it is necessary to include one additional wavefield in the
mix, namely shear. While including just two wavefields is certainly an option, there
isn’t any reason not to move up to full anisotropic elasticity by incorporating two shear
waves for a total of three wavefields. In three dimensions, Equation 2-22 takes the form
of Equation 2-23, where 𝑖 = 1, 2, 3 and we have arbitrarily chosen to set 𝑥 = 𝑥􏷠, 𝑦 = 𝑥􏷡,
and 𝑧 = 𝑥􏷢.

(2-23) 𝜕􏷡𝑢𝑖
𝜕𝑡􏷡

= 1
𝜌

􏷢

􏾝
𝑗=􏷠

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

Clearly, this is a three-dimensional equation with nine stress factors, 𝜏𝑖𝑗, one for each of
the three dimensions and wavefields. To make this into a system of equations governing
the three wavefields, we must find a way to relate the stresses, 𝜏𝑖𝑗 to the 𝑢𝑖. As before,
Hooke’s law comes to the rescue. What it says in this anisotropic case is:

Each component of stress is linearly proportional to every component of
strain.
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Strain, which measures the deformation (compression, extension, ...) of a solid, is
defined in the notation of the previous equation as Equation 2-24.

(2-24) 𝐸𝑚𝑛 =
1
2􏿶
𝜕𝑢𝑚
𝜕𝑥𝑛

+ 𝜕𝑢𝑛
𝜕𝑥𝑚

􏿹

The mathematical expression of Hooke’s law then takes the form of Equation 2-25.

(2-25) 𝜏𝑖𝑗 =􏾝
𝑚,𝑛

𝑐𝑖𝑗𝑚𝑛𝐸𝑚𝑛

Inserting Equation 2-25 into Equation 2-23, we finally get the complex system (𝑖 = 1, 2, 3)
of fully anisotropic equations of motion, Equation 2-26.

(2-26) 𝜕􏷡𝑢𝑖
𝜕𝑡􏷡

=􏾝
𝑚,𝑛,𝑗

𝑐𝑖𝑗𝑚𝑛
𝜌

𝜕􏷡𝑢𝑚
𝜕𝑥𝑛𝜕𝑥𝑗

Symmetry

Because Equation 2-26 is three-dimensional, each of the 𝑐𝑖𝑗𝑚𝑛 coefficients is actually a
three-dimensional volume. Even today’s massive supercomputers may not have sufficient
memory to handle a problem of this size.
We could easily throw up our hands at this point and give up, but, before we panic too
much, we might want to analyze the situation a bit. As it turns out there are at least
two things we can do to simplify the situation considerably. First, we can simplify the
mathematical notation to put us into a setting where we can make some sense of the
parameters, and second, we can reformulate the 𝑐𝑖𝑗𝑚𝑛 coefficients in a way that will make
a great deal more physical sense.
We are not really interested as much in the math as we are in understanding the kinds
of Earth models these 𝑐𝑖𝑗𝑚𝑛 coefficients define for us. We need to know how the various
velocities of the wavefields that propagate in the medium are defined. We also want to
see if we can understand how direction changes the speed of propagation, and then see if
we can find ways to estimate parameters that can be converted into 𝑐𝑖𝑗𝑚𝑛 volumes so we
can both synthesize data and image data we have recorded over fully elastic models.
The first simplification to the complexity of Equation 2-26 is based on the symmetry
of stress and strain. Here, the 𝑖𝑗 indices representing stress can be switched so that
𝑐𝑖𝑗𝑚𝑛 = 𝑐𝑗𝑖𝑚𝑛. Similarly, the strain based indices can also be switched so that 𝑐𝑖𝑗𝑚𝑛 = 𝑐𝑖𝑗𝑛𝑚.
Finally, it is also true that 𝑐𝑖𝑗𝑚𝑛 = 𝑐𝑚𝑛𝑖𝑗. This triple symmetry means that the total number
of 𝑐𝑖𝑗𝑚𝑛 volumes has been reduced to only 21! Thus, defining the most general model
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we can imagine requires only 21 independent parameters (volumes), instead of the 81
parameters we would need without symmetry.
By applying the indexing scheme (known as the Voigt scheme) in Equation 2-27, we
arrive at the 6x6 matrix shown in Equation 2-28.

(2-27)
𝑖𝑛𝑑𝑒𝑥 𝑖𝑗 = 11 22 33 23 13 12
𝑚𝑎𝑝 ↓ ↓ ↓ ↓ ↓ ↓ ↓
𝑖𝑛𝑑𝑒𝑥 𝑘, 𝑙 = 1 2 3 4 5 6

(2-28) 𝐶 = [𝑐𝑘𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑐􏷠􏷠 𝑐􏷠􏷡 𝑐􏷠􏷢 𝑐􏷠􏷣 𝑐􏷠􏷤 𝑐􏷠􏷥
𝑐􏷠􏷡 𝑐􏷡􏷡 𝑐􏷡􏷢 𝑐􏷡􏷣 𝑐􏷡􏷤 𝑐􏷡􏷥
𝑐􏷠􏷢 𝑐􏷡􏷢 𝑐􏷢􏷢 𝑐􏷢􏷣 𝑐􏷢􏷤 𝑐􏷢􏷥
𝑐􏷠􏷣 𝑐􏷡􏷣 𝑐􏷢􏷣 𝑐􏷣􏷣 𝑐􏷣􏷤 𝑐􏷣􏷥
𝑐􏷠􏷤 𝑐􏷡􏷤 𝑐􏷢􏷤 𝑐􏷣􏷤 𝑐􏷤􏷤 𝑐􏷤􏷥
𝑐􏷠􏷥 𝑐􏷡􏷥 𝑐􏷢􏷥 𝑐􏷣􏷥 𝑐􏷤􏷥 𝑐􏷥􏷥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

This matrix completely describes the unique set of 21 coefficients fully defining
anisotropic elasticity. In this case, the 𝐶 matrix is the most complicated form of
anisotropy we can encounter. For the interested reader, this case is called “triclinic”
symmetry and is probably something we will not be able to investigate computationally
until computers have advance significantly beyond where they are today. Moreover,
we may never be able to measure sufficient data to be able to estimate all of these
parameters. Consequently, we will focus on what we consider reasonable today.

Acoustic Symmetry

In what perhaps is overkill, the 𝐶 matrix takes the form shown in Equation 2-29 for a
purely acoustic medium.

(2-29) 𝐶 = [𝑐𝑘𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆 𝜆 𝜆 0 0 0
𝜆 𝜆 𝜆 0 0 0
𝜆 𝜆 𝜆 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Here, 𝜆 is the first of the two so-called “Lamè” parameters. Named after Gabriel Lamè,
they are material properties (proportionality constants) that relate stress to strain. In this
case, 𝜆 is directly related to the bulk modulus, 𝐾, so that the compressional velocity is
𝑣𝑝 = 􏽯

𝐾
𝜌
= 􏽯

𝜆
𝜌
.
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If we define the actual 𝑐𝑖𝑗𝑚𝑛 from the elements of 𝐶, plug them back into the fully
anisotropic Equation 2-26, we see that 𝑢􏷠 = 𝑢􏷡 = 𝑢􏷢 = 𝑢, and consequently
that Equation 2-26 reduces to Equation 2-30, which is, of course, the normal three-
dimensional scalar wave equation.

(2-30) 𝜕􏷡𝑢
𝜕𝑡􏷡

= 𝜆
𝜌
⎛
⎜
⎝

𝜕􏷡𝑢
𝜕𝑥􏷡􏷠

+ 𝜕
􏷡𝑢
𝜕𝑥􏷡􏷡

+ 𝜕
􏷡𝑢
𝜕𝑥􏷡􏷢

⎞
⎟
⎠

Equation 2-23 shows that 𝜏𝑖,𝑗 = 0, 𝑖 ≠ 𝑗, 𝜏􏷠,􏷠 = 𝜏􏷡,􏷡 = 𝜏􏷢,􏷢 = 𝜏, and 𝑢􏷠 = 𝑢􏷡 = 𝑢􏷢 = 𝑢, so that
Equation 2-30 becomes Equation 2-31.

𝜕􏷡𝑢
𝜕𝑡􏷡

= 𝜆
𝜌􏿰

𝜕𝜏
𝜕𝑥􏷠

+ 𝜕𝜏
𝜕𝑥􏷡

+ 𝜕𝜏
𝜕𝑥􏷢

􏿳
(2-31)

𝜏 = 𝜆
𝜌􏿰
𝜕𝑢
𝜕𝑥􏷠

+ 𝜕𝑢
𝜕𝑥􏷡

+ 𝜕𝑢
𝜕𝑥􏷢

􏿳

These two equations can also be written in first order form as Equation 2-32.
𝜕𝑣
𝜕𝑡 = 𝜆

𝜌􏿰
𝜕𝜏
𝜕𝑥􏷠

+ 𝜕𝜏
𝜕𝑥􏷡

+ 𝜕𝜏
𝜕𝑥􏷢

􏿳
(2-32) 𝜕𝜏

𝜕𝑡 = 𝜆
𝜌􏿰
𝜕𝑢
𝜕𝑥􏷠

+ 𝜕𝑢
𝜕𝑥􏷡

+ 𝜕𝑢
𝜕𝑥􏷢

􏿳

Isotropic Elastic Symmetry

For isotropic elastic models, the 𝐶 matrix takes the form in Equation 2-33, where 𝜇 is the
second of the two Lamè parameters, and represents the shear modulus.

(2-33) 𝐶 = [𝑐𝑘𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In this case, 𝑣𝑝 = 􏽯
𝜆+􏷡𝜇
𝜌

= 􏽯
𝐾+􏷣𝜇/􏷢
𝜌
, and the shear velocity is then 𝑣𝑠 = 􏽯

𝜇
𝜌
.

It is clear from these relationships, that given density, 𝜌, compressional velocity, 𝑣𝑝, and
shear velocity, 𝑣𝑠, it is quite easy to solve for the coefficients in the 𝐶 matrix, and then
produce the propagation equation for synthesizing isotropic elastic seismic data. It is also
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clear that modeling with this level of complexity is considerably more computationally
intensive than is the case for acoustic models.
Given the matrix in Equation 2-33 and then using Equation 2-23 and Equation 2-25, we
can write Equation 2-34.

𝜕􏷡𝑢􏷠
𝜕𝑡􏷡

= 1
𝜌􏿶
𝜕𝜏􏷠,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷠,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷠,􏷢
𝜕𝑥􏷢

􏿹(2-34)

𝜕􏷡𝑢􏷡
𝜕𝑡􏷡

= 1
𝜌􏿶
𝜕𝜏􏷡,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷡,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷡,􏷢
𝜕𝑥􏷢

􏿹

𝜕􏷡𝑢􏷢
𝜕𝑡􏷡

= 1
𝜌􏿶
𝜕𝜏􏷢,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷢,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷢,􏷢
𝜕𝑥􏷢

􏿹

𝜏􏷠,􏷠 = 𝜆 + 2𝜇
𝜌

𝜕𝑢􏷠
𝜕𝑥􏷠

+ 𝜆𝜌
𝜕𝑢􏷡
𝜕𝑥􏷡

+ 𝜆𝜌
𝜕𝑢􏷢
𝜕𝑥􏷢

𝜏􏷠,􏷡 = 𝜇
𝜌􏿶
𝜕𝑢􏷠
𝜕𝑥􏷡

+ 𝜕𝑢􏷡𝜕𝑥􏷠
􏿹

𝜏􏷠,􏷢 = 𝜇
𝜌􏿶
𝜕𝑢􏷠
𝜕𝑥􏷢

+ 𝜕𝑢􏷢𝜕𝑥􏷠
􏿹

𝜏􏷡,􏷡 = 𝜆
𝜌
𝜕𝑢􏷠
𝜕𝑥􏷠

+ 𝜆 + 2𝜇𝜌
𝜕𝑢􏷡
𝜕𝑥􏷡

+ 𝜆𝜌
𝜕𝑢􏷢
𝜕𝑥􏷢

𝜏􏷡,􏷢 = 𝜇
𝜌􏿶
𝜕𝑢􏷢
𝜕𝑥􏷡

+ 𝜕𝑢􏷡𝜕𝑥􏷢
􏿹

𝜏􏷢,􏷢 = 𝜆
𝜌
𝜕𝑢􏷠
𝜕𝑥􏷠

+ 𝜆𝜌
𝜕𝑢􏷡
𝜕𝑥􏷡

+ 𝜆 + 2𝜇𝜌
𝜕𝑢􏷢
𝜕𝑥􏷢

Note that each 𝜏𝑖,𝑗 is expressed in terms of various partial derivatives of the 𝑢𝑖. Back
substitution of these expressions into the formulas in Equation 2-34 for the second order
time derivatives allows us to write the elastic particle displacement equation in the form
of Equation 2-35.

(2-35) 𝜕􏷡𝐮
𝜕𝑡􏷡

= 􏿶
𝜆 + 2𝜇
𝜌 􏿹∇(∇ ⋅ 𝐮) −

𝜇
𝜌∇ × ∇ × 𝐮

From a practical point of view, Equation 2-35 says that, even in the elastic case, we can
solve for the vector components of particle displacement 𝐮 in much the same way that
we solve for the non-vector wavefield, 𝑢, in a scalar wave equation.
We can also write Equation 2-34 as a first order vector system. If we take the partial
derivatives of the stress-strain terms, 𝜏, in Equation 2-34 and let 𝑣𝑖 = 𝜕𝑢𝑖

𝜕𝑡
, we obtain the
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first order equation for particle velocity, Equation 2-36.
𝜕𝑣􏷠
𝜕𝑡 = 1

𝜌􏿶
𝜕𝜏􏷠,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷠,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷠,􏷢
𝜕𝑥􏷢

􏿹

𝜕𝑣􏷡
𝜕𝑡 = 1

𝜌􏿶
𝜕𝜏􏷡,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷡,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷡,􏷢
𝜕𝑥􏷢

􏿹

𝜕𝑣􏷢
𝜕𝑡 = 1

𝜌􏿶
𝜕𝜏􏷢,􏷠
𝜕𝑥􏷠

+
𝜕𝜏􏷢,􏷡
𝜕𝑥􏷡

+
𝜕𝜏􏷢,􏷢
𝜕𝑥􏷢

􏿹

𝜕𝜏􏷠,􏷠
𝜕𝑡 = 𝜆 + 2𝜇

𝜌
𝜕𝑣􏷠
𝜕𝑥􏷠

+ 𝜆𝜌
𝜕𝑣􏷡
𝜕𝑥􏷡

+ 𝜆𝜌
𝜕𝑣􏷢
𝜕𝑥􏷢

𝜕𝜏􏷠,􏷡
𝜕𝑡 = 𝜇

𝜌􏿶
𝜕𝑣􏷠
𝜕𝑥􏷡

+ 𝜕𝑣􏷡𝜕𝑥􏷠
􏿹(2-36)

𝜕𝜏􏷠,􏷢
𝜕𝑡 = 𝜇

𝜌􏿶
𝜕𝑣􏷠
𝜕𝑥􏷢

+ 𝜕𝑣􏷢𝜕𝑥􏷠
􏿹

𝜕𝜏􏷡,􏷡
𝜕𝑡 = 𝜆

𝜌
𝜕𝑣􏷠
𝜕𝑥􏷠

+ 𝜆 + 2𝜇𝜌
𝜕𝑣􏷡
𝜕𝑥􏷡

+ 𝜆𝜌
𝜕𝑣􏷢
𝜕𝑥􏷢

𝜕𝜏􏷡,􏷢
𝜕𝑡 = 𝜇

𝜌􏿶
𝜕𝑣􏷡
𝜕𝑥􏷢

+ 𝜕𝑣􏷢𝜕𝑥􏷡
􏿹

𝜕𝜏􏷢,􏷢
𝜕𝑡 = 𝜆

𝜌
𝜕𝑣􏷠
𝜕𝑥􏷠

+ 𝜆𝜌
𝜕𝑣􏷡
𝜕𝑥􏷡

+ 𝜆 + 2𝜇𝜌
𝜕𝑣􏷢
𝜕𝑥􏷢

Equation 2-36 provides a first order system of equations (in time) as opposed a second
order system like that in Equation 2-26. Note that, because of symmetry, we need not
write down the terms 𝜕𝜏􏷫,􏷪

𝜕𝑡
= 𝜕𝜏􏷪,􏷫

𝜕𝑡
, 𝜕𝜏􏷬,􏷪

𝜕𝑡
= 𝜕𝜏􏷪,􏷬

𝜕𝑡
, or 𝜕𝜏􏷬,􏷫

𝜕𝑡
= 𝜕𝜏􏷫,􏷬

𝜕𝑡
.

We can write Equation 2-36 in the form of Equation 2-37, where 𝐒(𝑡) is a suitable vector
source term, 𝐯 = 􏿮𝑣􏷠, 𝑣􏷡, 𝑣􏷢, 𝜏􏷠,􏷠, 𝜏􏷠,􏷡, 𝜏􏷠,􏷢, 𝜏􏷡,􏷡, 𝜏􏷡,􏷢, 𝜏􏷢,􏷢􏿱

𝑇 , and Equation 2-38 defines 𝐇.
The 𝐀, 𝐁, and 𝐂 matrices in Equation 2-38 are themselves defined in Equation 2-39,
Equation 2-40 and Equation 2-41, respectively.

(2-37) 𝜕𝐯
𝜕𝑡 = 𝐇𝐯 + 𝐒

(2-38) 𝐇 = 𝐀 𝜕𝐯
𝜕𝑥􏷠

+ 𝐁 𝜕𝐯𝜕𝑥􏷡
+ 𝐂 𝜕𝐯𝜕𝑥􏷢
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(2-39) 𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 𝜌−􏷠 0 0 0 0 0
0 0 0 0 𝜌−􏷠 0 0 0 0
0 0 0 0 0 𝜌−􏷠 0 0 0

𝜆+􏷡𝜇
𝜌

0 0 0 0 0 0 0 0
0 𝜇

𝜌
0 0 0 0 0 0 0

0 0 𝜇
𝜌

0 0 0 0 0 0
𝜆
𝜌

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
𝜆
𝜌

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2-40) 𝐁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 𝜌−􏷠 0 0 0 0
0 0 0 0 0 0 𝜌−􏷠 0 0
0 0 0 0 0 0 0 𝜌−􏷠 0
0 𝜆

𝜌
0 0 0 0 0 0 0

𝜇
𝜌

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 𝜆+􏷡𝜇

𝜌
0 0 0 0 0 0 0

0 0 𝜇
𝜌
0 0 0 0 0 0

0 𝜆
𝜌

0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2-41) 𝐂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 𝜌−􏷠 0 0 0
0 0 0 0 0 0 0 𝜌−􏷠 0
0 0 0 0 0 0 0 0 𝜌−􏷠
0 0 𝜆

𝜌
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
𝜇
𝜌

0 0 0 0 0 0 0 0
0 0 𝜆

𝜌
0 0 0 0 0 0

0 𝜇
𝜌

0 0 0 0 0 0 0
0 0 𝜆+􏷡𝜇

𝜌
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Equation 2-38 is appealing because it is a one-dimensional, time-domain differential
system whose solution is easily expressed as Equation 2-42, where 𝐯(0) represents the
initial conditions. When we discuss numerical approximations to this equation, we will
find this fact quite useful. It allows us to propagate wavefields one time stamp at a time
without having to solve a second order system. It is also easily manipulated to produce a
very efficient and accurate forward marching algorithm, the evolution equation.

(2-42) 𝐯(𝑡) = 𝑒𝑡𝐇𝐯(0) +􏾙
𝑡

􏷟
𝑒𝜉𝐇𝐒(𝑡 − 𝜉)𝑑𝜉
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Before developing the forward marching algorithm, we continue our discussion of the
various types of data we might wish to synthesize.

Vertical Transverse Isotropy (VTI) Symmetry

The 𝐶 matrix in Equation 2-43 defines what has become known as vertical transverse
isotropy (VTI).

(2-43) 𝐶 = [𝑐𝑘𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑐􏷠􏷠 𝑐􏷠􏷠 − 2𝑐􏷥􏷥 𝑐􏷠􏷢 0 0 0
𝑐􏷠􏷠 − 2𝑐􏷥􏷥 𝑐􏷠􏷠 𝑐􏷠􏷢 0 0 0
𝑐􏷠􏷢 𝑐􏷠􏷢 𝑐􏷢􏷢 0 0 0
0 0 0 𝑐􏷣􏷣 0 0
0 0 0 0 𝑐􏷣􏷣 0
0 0 0 0 0 𝑐􏷥􏷥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Waves propagating in media of this type exhibit a symmetry around the vertical or depth
axis, 𝑧. Note that the pattern of this matrix is identical to that of the isotropic elastic 𝐶
matrix. In fact, by setting 𝑐􏷠􏷠 = 𝑐􏷢􏷢, 𝑐􏷣􏷣 = 𝑐􏷤􏷤 = 𝜇, and 𝑐􏷠􏷢 = 𝜆, the VTI 𝐶 matrix
becomes the isotropic elastic matrix. As we will see, the square roots of the ratios 𝑐􏷬􏷬

𝜌
and

𝑐􏷭􏷭
𝜌
specify the vertical compressional and shear velocities in the anisotropic medium.

It should not be a surprise that the 𝑐𝑖𝑗 values in the matrix can be related to intuitive
parameters more representative of how we think of the Earth.
We could again follow the development of Equation 2-36 to produce an equivalent
for VTI media, but that is left to the reader. The important thing to notice is that
implementation of a discrete version of the resulting first order system will almost
certainly follow along the same lines as that for the isotropic elastic case above.
Rock types exhibiting VTI behavior include shales and thin-bed sequences.
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Polar Isotropy Symmetry

The difference between VTI and polar isotropy is that the symmetry axis is tilted
relative to the vertical axis. Early on, this type of anisotropic symmetry was called tilted
transversely isotropic (TTI) anisotropy, but in this book I prefer to use Leon Thomsen’s
more general term, polar symmetry. Symmetry of this type is easily obtained by simply
rotating the tensor 𝑐𝑖𝑗𝑚𝑛 of a VTI medium through a fixed angle. The new resulting 𝐶
matrix produces wavefields that are symmetric around the new symmetry axis. In this
case the axis can be relative to any plane through the medium and the propagation is
symmetric relative to that plane. Unfortunately, when the symmetry axis is not aligned
along the primary axis, neither the 𝐶 matrix nor the tensor, 𝑐𝑖𝑗𝑚𝑛, is particularly simple
and generally does not have an easily recognized pattern. This may not be much of an
issue since, when the rotation angle is known, it is possible to rotate back forth between
VTI and TTI at any time.
Rock types with polar isotropy are identical to those exhibiting VTI, but in this case the
symmetry is orthogonal to the dip of the rock.

Orthorhombic Isotropy Symmetry

Polar anisotropy, including VTI, is always defined by five parametric volumes and the
two angles defining the symmetry axis. The 𝐶 matrix with nine elements in Equation 2-
44 defines orthorhombic anisotropy.

(2-44) 𝐶 = [𝑐𝑘𝑙] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑐􏷠􏷠 𝑐􏷠􏷡 𝑐􏷠􏷢 0 0 0
𝑐􏷠􏷡 𝑐􏷡􏷡 𝑐􏷡􏷢 0 0 0
𝑐􏷠􏷢 𝑐􏷡􏷢 𝑐􏷢􏷢 0 0 0
0 0 0 𝑐􏷣􏷣 0 0
0 0 0 0 𝑐􏷤􏷤 0
0 0 0 0 0 𝑐􏷥􏷥

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Orthorhombic anisotropy is probably the most realistic anisotropy that we will be able to
handle or even use in the forceable future. Again, derivation of a first order system like
that in Equation 2-26 is left to your discretion.
Examples of rock types that exhibit orthorhombic symmetry include

• thin-bed sequences or shale with a single set of vertical fractures
• isotropic formation with a single set of vertical, noncircular fractures
• thin-bed sequence, or shale, or a massive isotropic sandstone with orthogonal sets
of vertical fractures
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Thomsen Parameters

In the mid 1980’s, Leon Thomsen’s research into anisotropy at AMOCO’s Tulsa,
Oklahoma research lab lead him to define a collection of parameters that provided a
much more intuitive picture of the entries in the 𝐶 matrix. Thomsen began by defining
Equation 2-45.

(2-45)

𝑣𝑃􏷟 =
􏽯

𝑐􏷬􏷬
𝜌

𝑣𝑆􏷟 =
􏽯

𝑐􏷭􏷭
𝜌

𝜀 = 𝑐􏷪􏷪−𝑐􏷬􏷬
􏷡𝑐􏷬􏷬

𝛿 = (𝑐􏷪􏷬+𝑐􏷭􏷭)
􏷫−(𝑐􏷬􏷬−𝑐􏷭􏷭)

􏷫

􏷡𝑐􏷬􏷬(𝑐􏷬􏷬−𝑐􏷭􏷭)

𝛾 = 𝑐􏷯􏷯−𝑐􏷭􏷭
􏷡𝑐􏷭􏷭

He then showed that the exact plane wave velocities could be expressed as a function of
the propagation angle, 𝜃, using Equation 2-46, where 𝐷′ is defined by Equation 2-47.

(2-46)

𝑣􏷡𝑝(𝜃) = 𝑣􏷡𝑃􏷟􏿮1 + 𝜀 sin
􏷡 𝜃 + 𝐷′􏿱

𝑣􏷡𝑠⟂(𝜃) = 𝑣􏷡𝑆􏷟􏿯1 + 𝜀
𝑣􏷫𝑃􏷩
𝑣􏷫𝑆􏷩
sin􏷡 𝜃 + 𝑣􏷫𝑃􏷩

𝑣􏷫𝑆􏷩
𝐷′􏿲

𝑣􏷡𝑠∥(𝜃) = 𝑣􏷡𝑆􏷟􏿮1 + 2𝛾 sin
􏷡 𝜃􏿱

(2-47) 𝐷′ =
(1 − 𝑣􏷫𝑆􏷩

𝑣􏷫𝑆􏷩
)

2

⎡
⎢
⎢
⎢
⎣

⎧⎪⎪
⎨⎪⎪⎩

1 + 4(2𝛿 − 𝜀)

1 − 𝑣􏷫𝑆􏷩
𝑣􏷫𝑆􏷩

sin􏷡 𝜃 cos􏷡 𝜃 +
4(1 − 𝑣􏷫𝑆􏷩

𝑣􏷫𝑆􏷩
+ 𝜀)𝜀

1 − 𝑣􏷫𝑆􏷩
𝑣􏷫𝑆􏷩

sin􏷣 𝜃

⎫⎪⎪
⎬⎪⎪⎭

􏷠/􏷡

− 1

⎤
⎥
⎥
⎥
⎦

While these formulas have found considerable use for describing anisotropic models
and for providing propagating equations for synthesis of anisotropic seismic data, the
parameters of most importance for this book are the vertical and horizontal velocities.
Typically, these velocities are defined from the weak polar anisotropy expressions in
Equation 2-48 with values defined by Equation 2-49.

(2-48)

𝑣􏷡𝑝(𝜃) ≈ 𝑣􏷡𝑃􏷟􏿮1 + 𝛿 sin
􏷡 𝜃 cos􏷡 𝜃 + 𝜀 sin􏷣 𝜃􏿱

𝑣􏷡𝑠⟂(𝜃) ≈ 𝑣􏷡𝑆􏷟􏿯1 +
𝑣􏷫𝑃􏷩
𝑣􏷫𝑆􏷩
(𝜀 − 𝛿) sin􏷡 𝜃 cos􏷡 𝜃􏿲

𝑣􏷡𝑠∥(𝜃) ≈ 𝑣􏷡𝑆􏷟􏿮1 + 2𝛾 sin
􏷡 𝜃􏿱
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(2-49)

𝑣𝑝(0
∘) ≈ 𝑣𝑃􏷟

𝑣𝑝(90
∘) ≈ 𝑣𝑃􏷟(1 + 𝜀)

𝑣𝑠⟂(0
∘) ≈ 𝑣𝑆􏷟

𝑣𝑠⟂(90
∘) ≈ 𝑣𝑆􏷟

𝑣𝑠∥(0
∘) ≈ 𝑣𝑆􏷟

𝑣𝑠∥(90
∘) ≈ 𝑣𝑆􏷟(1 + 𝛾)

Clearly, 𝜀 controls the percentage of anisotropy. It determines the speed of the horizontal
velocity relative to the vertical velocity 𝑣𝑆􏷟. What will become apparent as we progress
through this book is that 𝛿 controls what I will refer to as conversion to depth.
Expressing anisotropic parameters in this manner provides a more natural idea of the
parameters defining a polar anisotropic model. While there are many possible variations,
such models are defined by four volumes, the vertical velocities 𝑣𝑃􏷟 and 𝑣𝑆􏷟, 𝜀, and 𝛿.
Equation 2-26 is then discretized to provide the necessary propagating equation.

Algorithms

Algorithms for synthesizing seismic data abound. Here we will focus on four such
methods: Ray-based, finite-difference, finite-element, and Fourier-domain-based
methods. Of course, you can construct algorithms in various combinations of these
domains, so it is technically possible to develop approaches that work with finite-
differences in frequency-space or even perhaps time and spatial frequency. Once
the basic concepts for the four are fully developed, pursuing alternative domain
combinations is relative straightforward.
To keep the discussion as simple as possible we will focus all of our attention on the two-
dimensional versions of Equation 2-17, and the coupled system Equation 2-36.

Variational Formulation and Finite Elements

We begin with Equation 2-18 in the frequency domain, where 𝑔(𝑥⃗𝑠) is a pressure source
located at 𝑥⃗𝑠 = (𝑥𝑠, 𝑦𝑠, 𝑧𝑠), and with 𝑥⃗ = (𝑥, 𝑦, 𝑧), 𝑘(𝑥⃗) =

𝜔
𝑣(𝑥⃗)
.

Equation 2-50 has the variational form in Equation 2-51, where 𝑉 is an element of a
suitable space, 𝒱 , of functions that can be used to approximate 𝑈(𝑥⃗).

(2-50) 𝑘􏷡

𝜌 𝑈(𝑥, 𝑦, 𝑧, 𝜔) + ∇ ⋅
1
𝜌∇𝑈 = −𝑔(𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝜔)
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(2-51) 𝜑(𝑈,𝑉) = 􏾙
􏸵

𝑘􏷡

𝜌 𝑈𝑉𝑑Ω +􏾙
􏸵

1
𝜌∇𝑈 ⋅ ∇𝑉𝑑Ω = −􏾙

􏸵
𝑔(𝑥⃗𝑠, 𝑡)𝑑Ω

Given a family, 𝑉𝑘, of basis functions spanning 𝒱 , we can approximate 𝑈 and 𝑔 by
Equation 2-52 and Equation 2-53, respectively.

(2-52) 𝑈(𝑥⃗) =
𝑛

􏾝
𝑘=􏷠

𝐴𝑘𝑉𝑘(𝑥⃗)

(2-53) 𝑔(𝑥⃗𝑠, 𝜔) =
𝑛

􏾝
𝑘=􏷠

𝑏𝑘𝑉𝑘(𝑥⃗)

Thus, the variational form in Equation 2-51 can be expressed in matrix form as
Equation 2-54 or Equation 2-55, where􏹏𝐴𝑇 = [𝐴􏷠, 𝐴􏷡,⋯ ,𝐴𝑛] and􏹎𝑏𝑇 = [𝑏􏷠, 𝑏􏷡,⋯ , 𝑏𝑛].

(2-54)
𝑛

􏾝
𝑘=􏷠

𝐴𝑘𝜑(𝑉𝑘, 𝑉𝑗) =
𝑛

􏾝
𝑘=􏷠

𝑏𝑘􏾙
􏸵
𝑉𝑘𝑉𝑗𝑑Ω

(2-55) 𝐒𝐴 = 𝐌𝑏⃗

In this setting, 𝐒 is called the complex impedance matrix and𝐌 is called the stiffness
matrix. Note that we have dropped reference to frequency, 𝜔, so that 𝐒𝐴 = 𝐌𝑔⃗ is a single
frequency equation.
If we choose our discretization scheme properly, we may assume that 𝐒 is square,
symmetric, and invertible, so that the modeling operator 𝐒−𝟏 generates data according
to the formula in Equation 2-56.
(2-56) 􏹎𝑈 = 𝐒−𝟏𝑓

The key point to this discussion is that we have wide latitude in the choice of 𝑉𝑘. We
can divide the model into a collection of local regions and then define 𝑉𝑘 through
polynomials, pyramids, or perhaps even boxes over each of the sub domains. This
approach works well when the problem is defined by things like bridges, aeronautical
structures, and other rigid bodies, but has never gained ground in seismic settings.
Dividing the medium up in this way is quite difficult mathematically, so modern
methods tend to choose uniformly square or rectangular domains. It is also convenient
to have basis functions that are easily differentiable and orthogonal. Thus, in some sense,
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the modern version of finite element methods (FEM) tends to look more and more like
a very sophisticated finite difference approach. However you accomplish the model
division, the need to invert a matrix of significant size remains a serious issue.
For example, consider the one dimensional case and define 𝑉𝑘(𝑥) using Equation 2-57.

(2-57) 𝑉𝑘(𝑥) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑥−𝑥𝑘−􏷪
𝑥𝑘−𝑥𝑘−􏷪

𝑥 ∈ [𝑥𝑘−􏷠, 𝑥𝑘]

𝑥𝑘+􏷪−𝑥𝑘
𝑥𝑘+􏷪−𝑥𝑘

𝑥 ∈ [𝑥𝑘, 𝑥𝑘+􏷠]

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

As illustrated in Figure 2-11, the 𝑉𝑘 = 1, ..., 𝑛 basis is composed of shifted and scaled
tent functions. For the two-dimensional case, we again choose one basis function, 𝑉𝑘,
per vertex, 𝑥𝑘, of the triangulation of the planar region Ω. The function 𝑉𝑘 is the unique
function of 𝑥 whose value is 1 at 𝑥𝑘 and zero at every 𝑥𝑗, 𝑗 ≠ 𝑘. This process extends
easily to three dimensions.

Figure 2-11. Basis functions 𝑉𝑘 (blue) and a linear combination of them, which is
piecewise linear (red)

The primary advantage of this choice of basis is that the inner product in Equation 2-58
will be zero for almost all 𝑗, 𝑘.

(2-58) ⟨𝑉𝑗, 𝑉𝑘⟩ = 􏾙
􏷠

􏷟
𝑉𝑗𝑉𝑘 𝑑𝑥

In the one dimensional case, the support of 𝑉𝑘 is the interval [𝑥𝑘−􏷠, 𝑥𝑘+􏷠]. Hence, the
integrands of ⟨𝑉𝑗, 𝑉𝑘⟩ and Φ(𝑉𝑗, 𝑉𝑘) are identically zero whenever |𝑗 − 𝑘| > 1.
Similarly, in the planar case, if 𝑥𝑗 and 𝑥𝑘 do not share an edge of the triangulation, then
the integrals 2-59 and 2-60 are both zero.
(2-59) 􏾙

􏸵
𝑉𝑗𝑉𝑘 𝑑𝑠

Chapter 2. Seismic Modeling 37



Variational Formulation and Finite Elements Panorama Technologies

(2-60) 􏾙
􏸵
∇𝑉𝑗 ⋅ ∇𝑉𝑘 𝑑𝑠

In two-dimensions, triangular elements can be used to approximate the
domain of approximation in both regular and irregular ways. In Figure 2-
12, a regular mesh is used to approximate the domain, and then through
pyramids approximate the dome-like structure in the figure. Figure 2-12
illustrates a reasonably regular triangular decomposition of a domain at the
bottom and the approximation to a dome accomplished through the use of
the pyramidal versions of the basis functions in Figure 2-11. (From Wikipedia
contributors,“Finite element method,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Finite element method&oldid=298136444).

Figure 2-12. Domain triangles with pyramids as elements approximate a dome like
surface. In this case the triangular basis mesh is regular. ( From
Wikipedia)

In contrast, Figure 2-13 shows an much more irregular approximation of the domain
of approximation. It is an example of the utilization of irregularly sized triangles to
decompose the domain of approximation. The mesh is denser in areas of interest.
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Figure 2-13. Domain triangles with pyramids as elements approximate a dome like
surface. Here the triangular basis mesh is irregular. ( From
Wikipedia)

Figure 2-14 shows the general form of a 2D 𝑆 matrix. Generally, this matrix has
dimensions equal to the number of nodes or finite elements. An intriguing feature of the
finite element method is that once the S-matrix is inverted, any and all shot responses
can be synthesized from this single inverse.

Figure 2-14. The general form of the S-matrix in two-dimensions. (From
Wikipedia)
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Depending on the author, the word “element” in “finite element method” refers either
to the triangles in the domain, the piecewise linear basis function, or both. For our
purposes, it is the latter. So, for instance, an author interested in curved domains
might replace the triangles with curved primitives, in which case he might describe
his elements as being curvilinear. On the other hand, some authors replace “piecewise
linear” by “piecewise quadratic” or even “piecewise polynomial”. The author might then
say “higher order element” instead of “higher degree polynomial”. The finite element
method is not restricted to triangles (or tetrahedra in 3D, or higher order simplexes in
multidimensional spaces), but can be defined on quadrilateral subdomains (hexahedra,
prisms, or pyramids in 3D, and so on). Higher order shapes (curvilinear elements) can
be defined with polynomial and even non-polynomial shapes (for example, ellipses or
circles).
More advanced implementations (adaptive finite element methods) utilize a method to
assess the quality of the results (based on error estimation theory) and modify the mesh
during the solution, aiming to achieve an approximate solution within some bounds
from the “exact” solution of the continuum problem. Mesh adaptivity may utilize various
techniques, the most popular are:

• Moving nodes (r-adaptivity)
• Refining (and unrefining) elements (h-adaptivity)
• Changing order of base functions (p-adaptivity)
• Combinations of the above (hp-adaptivity)

In general, the finite element method is characterized by the following process.

• Choose a grid for Ω. In the preceding example the grid consisted of grid points or
nodes, but one can also use triangles or curvilinear polygons.

• Choose basis functions. In our discussion, we used piecewise linear basis functions,
but it is also common to use piecewise polynomial basis functions

A separate consideration is the smoothness of the basis functions. For second order
elliptic boundary value problems, piecewise polynomial basis functions that are merely
continuous will suffice (that is, the derivatives are discontinuous.) For higher order
partial differential equations, you must use smoother basis functions. For instance, for
a fourth order problem such as 𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑦𝑦𝑦𝑦 = 𝑓, you can use piecewise quadratic basis
functions that are both continuous and have first order derivatives.
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An Old Movie

We can now use our modeling schema to generate synthetic shot data. Because we
have a complete wavefield at each time step, we present the synthetic data in movie
form. Our first movie (snapshots in Figure 2-15) was generated by R. G. Keys (now at
ConocoPhillips in Houston, Texas) in February of 1982. At that time, the multiplicity
of snapshots comprising these data required about 30 minutes to generate on a Cray 1S
supercomputer. Today, almost any modern desktop, and even some laptops, can produce
the same movie virtually in real time. As the movie progresses, please note that waves
travel in all directions and the wavefield recorded at the top surface of this model would
include refractions, reflections, and all forms of multiples.

Figure 2-15. Snapshot from 1982 Finite Element Pinchout Model synthesis.
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Finite Differences

At first glance, finite difference modeling is by far the simplest method to grasp,
since all that is necessary is to replace the continuous partial derivatives by discrete
approximations. However, difficulty arises in producing an accurate approximation to
the various derivatives. There are two generally accepted approaches to finding these
approximations. The first is based purely on some form of fitting algorithm, frequently
using polynomials, wherein a set of basis functions with known derivatives approximate
the function whose derivative is required. Once the fit is obtained the derivative is
defined in terms of the approximating functions.
The second way to approximate the derivatives is the finite element method (FEM). In
FEM, the region of interest is divided into numerous connected subregions or elements
within which approximate functions (usually polynomials) are used to represent the
unknown quantity.

Polynomial Differences

The easiest approach to finite difference approximation is to simply use a difference
quotient in Equation 2-61, like we did when we derived the full two-way equation. This
is called a first order forward difference approximation.
(2-61) 𝑑𝑢

𝑑𝑥 =
𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥)

Δ𝑥

Similarly, we have the backward difference approximation in the form of Equation 2-62.
(2-62) 𝑑𝑢

𝑑𝑥 =
𝑢(𝑥) − 𝑢(𝑥 − Δ𝑥)

Δ𝑥

What may not be clear is that these formulas are the result of approximating 𝑢 by a
straight line between 𝑥 + Δ𝑥 and 𝑥 and between 𝑥 − Δ𝑥 and 𝑥.
One of the more popular methods for polynomial approximation is based on the
Lagrange polynomial in Equation 2-63 defined for a sequence of points [𝑥􏷟, 𝑥􏷠, 𝑥􏷡,⋯𝑥𝑛].

(2-63) 𝐿𝑛,𝑘(𝑥) =
𝑖=𝑛

􏾠
𝑖=􏷩
𝑖≠𝑘

(𝑥 − 𝑥𝑖)
(𝑥𝑘 − 𝑥𝑖)

Any function 𝑓(𝑥) can be defined such that the point sequence can then be approximated
by the formula of Equation 2-64.

(2-64) 𝑃(𝑥) =
𝑘=𝑛

􏾝
𝑘=􏷟

𝑓(𝑥𝑘)𝐿𝑛,𝑘(𝑥)
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Approximations to the derivatives of 𝑓(𝑥) can then be approximated through derivatives
of the polynomial 𝑃. Since 𝑃 will always be of the form in Equation 2-65, the
approximate derivative will always be a weighted sum of the values of 𝑓(𝑥) at the
sequence [𝑥􏷟, 𝑥􏷠, 𝑥􏷡,⋯𝑥𝑛].
(2-65) 𝑃(𝑥) = 𝑎􏷟 + 𝑎􏷠𝑥 + 𝑎􏷡𝑥􏷡 +⋯𝑎𝑛𝑥𝑛

More accurate approximations can be obtained through the use of other polynomial
bases, including the Hermite and Chebychev polynomials.

Taylor Series Differences

The Taylor series for 𝑢(𝑥 ± Δ𝑥) in terms of 𝑢(𝑥) is given in Equation 2-66.

(2-66) 𝑢(𝑥 ± Δ𝑥) = 𝑢(𝑥) ± 𝜕𝑢𝜕𝑥Δ𝑥 +
𝜕􏷡𝑢
𝜕𝑥􏷡

Δ𝑥􏷡
2! ±

𝜕􏷢𝑢
𝜕𝑥􏷢

Δ𝑥􏷢
3! +⋯

If we rearrange this series in the form Equation 2-67, we immediately recognize that the
forward and backward differences are accurate to Δ𝑥. Mathematically, we say that the
forward and backward differences are 𝑂(Δ𝑥).

(2-67) 𝑢(𝑥 ± Δ𝑥) − 𝑢(𝑥)
Δ𝑥 = ±𝜕𝑢𝜕𝑥 +

𝜕􏷡𝑢
𝜕𝑥􏷡

Δ𝑥
2! ±

𝜕􏷢𝑢
𝜕𝑥􏷢

Δ𝑥􏷡
3! +⋯

The Taylor series in Equation 2-66 can easily form the basis for other more accurate
formulas. The most obvious formula arises from the sum of the Taylor series expansions
for 𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥) and 𝑢(𝑥) − 𝑢(𝑥 − Δ𝑥). This immediately yields the central difference
formula in Equation 2-68 which is 𝑂(Δ𝑥􏷡).

(2-68) 𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥 − Δ𝑥)
2Δ𝑥 = 𝜕𝑢

𝜕𝑥 +
𝜕􏷢𝑢
𝜕𝑥􏷢

Δ𝑥􏷡
3! +

𝜕􏷤𝑢
𝜕𝑥􏷤

Δ𝑥􏷣
5! +⋯

Since we generally think of Δ𝑥 as being much less than 1 in magnitude, this central
difference formula is clearly an improvement over a first-order forward or backward
difference.

Second Order Differences

When we summed the formulas for 𝑢(𝑥 + Δ𝑥) − 𝑢(𝑥) and 𝑢(𝑥) − 𝑢(𝑥 − Δ𝑥), we obtained a
series that contained odd order derivatives. Accordingly, if we subtract the two formulas,
we obtain a series that contains only even order derivatives. This immediately produces
the 𝑂(Δ𝑥􏷡) formula for the second derivative with respect to 𝑥.

(2-69) 𝑢(𝑥 + Δ𝑥) − 2𝑢(𝑥) + 𝑢(𝑥 − Δ𝑥)
Δ𝑥􏷡 = 𝜕𝑢􏷡

𝜕𝑥􏷡 +
𝜕􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷡
4! + 𝜕

􏷥𝑢
𝜕𝑥􏷥

Δ𝑥􏷣
6! +⋯
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High Order Differences

Extension of the second order central difference formula to higher orders is tedious but
straight forward. For any given 𝑘 (real or integer), there is Equation 2-70.

𝑢(𝑥 + 𝑘Δ𝑥) + 𝑢(𝑥 − 𝑘Δ𝑥)
2 = 𝑢(𝑥) + 𝑘􏷡𝜕𝑢

􏷡

𝜕𝑥􏷡
Δ𝑥􏷡
2! + 𝑘

􏷣𝜕
􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷣
4!(2-70)

+ 𝑘􏷥𝜕
􏷥𝑢
𝜕𝑥􏷥

Δ𝑥􏷥
6! + 𝑘􏷧𝜕

􏷧𝑢
𝜕𝑥􏷧

Δ𝑥􏷧
8! + ⋯

Thus, if we want a fourth order scheme, we take the two terms in Equation 2-71
and Equation 2-72, solve the second term for the fourth order partial derivative and
substitute the result into the first term to obtain Equation 2-73.

𝑢(𝑥 + Δ𝑥) + 𝑢(𝑥 − Δ𝑥)
2 = 𝑢(𝑥) + 𝜕𝑢

􏷡

𝜕𝑥􏷡
Δ𝑥􏷡
2! +

𝜕􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷣
4!(2-71)

𝑢(𝑥 + 2Δ𝑥) + 𝑢(𝑥 − 2Δ𝑥)
2 = 𝑢(𝑥) + 4 𝜕𝑢

􏷡

𝜕𝑥􏷡
Δ𝑥􏷡
2! + 16

𝜕􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷣
4!(2-72)

(2-73) 𝑢(𝑥 + 2Δ𝑥 + 16𝑢(𝑥 + Δ𝑥) − 34𝑢(𝑥) + 16𝑢(𝑥 − Δ𝑥) + 𝑢(𝑥 − 2Δ𝑥)
12Δ𝑥􏷡 ≈ 𝜕𝑢􏷡

𝜕𝑥􏷡

Higher order central difference approximations are obtained by simply adding additional
terms to the mix. For example, a 10th order accurate term is obtained by back-
substitution in the five equations when 𝑘 = 1, 2, 3, 4, 5. The result is a scheme of the form
in Equation 2-74, where the terms are given in Table 2.1.

(2-74) 𝜕𝑢􏷡
𝜕𝑥􏷡 ≈

􏷤

􏾝
−􏷤

𝑤𝑘𝑢(𝑥 − 𝑘Δ𝑥)

Table 2.1. Spatial Difference Terms

|k| w
0 -5.8544444444
1 3.3333333333
2 -0.4761904762
3 0.0793650794
4 -0.0099206349
5 0.0006349206
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Finite Differences for the Pressure Formulation

We can now formulate a finite difference propagation equation of just about any order
we would like. However, it is of interest to reconsider the graphic in Figure 2-16(b).
This figure, based on a simple second-order space-time difference equation shows that
to compute any given fixed time stamp, the maximum extent of the stencil is exactly
equal to three in each spatial direction and two in time. Thus, to make this process
computationally efficient, it is prudent to keep the three 𝑡 − Δ𝑡, 𝑡 and 𝑡 + Δ𝑡 volumes in
memory at all times.
It is clear from Equation 2-74 that higher order differences will produce stencils with
maximum extent determined by the maximum value of 𝑘. Thus, if we chose to use a 10th
order scheme for each both space and time, our propagator will be 11 grid nodes wide
in each spatial direction and 10 volumes in memory for each of the time stamps 𝑡 − 𝑘Δ𝑡
for 𝑘 = −5, 5. Even with current computational capabilities, holding this many volumes
in memory is somewhat impractical. It is natural to try and find a procedure that avoids
this memory explosion problem.

Graphical Descriptions

Figure 2-16(a) demonstrates two-dimensional propagation and Figure 2-16(b)
demonstrates three-dimensional propagation in what is generally called acoustic
Earth models. Note that the central difference stencil extends from time 𝑡 −Δ𝑡 to time 𝑡 to
compute an output point at 𝑡 + Δ𝑡.

Figure 2-16. Graphical interpretation of (a) 2-D and (b) 3-D propagators.

Note that in both cases, the stencil surrounds the ultimate output point to compute
the new value. In the 2-D case, the stencil nodes are planar, while the 3-D nodes are
volumetric. Thus, the wavefields are allowed to propagate upward, downward, and
laterally in all directions as the propagation continues. It also means that we must
compute all nodes at step 𝑡 before we can compute any of the nodes at 𝑡 + Δ𝑡. The
examples in the last three figures produce what is called two-way propagation. All
waveform styles (for example, refractions, free-surface, and peg-leg multiples) are
possible in this setting since these propagators synthesize full waveform data.
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Lax-Wendroff Method

Probably the best known “trick”, initially published by Peter Lax and Burton Wendroff
(see also M.A. Dablain), used the wave equation to find an accurate fourth order
difference for 𝜕􏷫

𝜕𝑡􏷫
that does not increase the overall memory requirement. To understand

this trick, consider the case in two dimensions when the velocity is constant and 𝜌 = 1.
From earlier efforts, we have Equation 2-75.

𝜕􏷡𝑝
𝜕𝑡􏷡

= 1
Δ𝑡􏷡

⎛
⎜
⎜
⎝
𝑝(𝑡 + Δ𝑡) − 2𝑝(𝑡) + 𝑝(𝑡 − Δ𝑡) −

𝑖=∞

􏾝
𝑖=􏷡

𝜕􏷡𝑖𝑝
𝜕𝑡􏷡𝑖

Δ𝑡􏷡𝑖

2𝑖!

⎞
⎟
⎟
⎠(2-75)

≈ 1
Δ𝑡􏷡

⎛
⎜
⎝
𝑝(𝑡 + Δ𝑡) − 2𝑝(𝑡) + 𝑝(𝑡 − Δ𝑡) − 𝜕

􏷣𝑝
𝜕𝑡􏷣

Δ𝑡􏷣

12!
⎞
⎟
⎠

We also know the second order derivative, 𝜕
􏷫𝑝
𝜕𝑡􏷫
, in Equation 2-76.

(2-76) 𝜕􏷡𝑝
𝜕𝑡􏷡

= 𝑣􏷡
⎛
⎜
⎝

𝜕􏷡𝑝
𝜕𝑥􏷡 +

𝜕􏷡𝑝
𝜕𝑧􏷡

⎞
⎟
⎠

Thus, the fourth order derivative in time is given by Equation 2-77.
𝜕􏷣𝑝
𝜕𝑡􏷣

= 𝑣􏷡
⎡
⎢
⎣

𝜕􏷡𝑝
𝜕𝑥􏷡

⎛
⎜
⎝

𝜕􏷡𝑝
𝜕𝑡􏷡

⎞
⎟
⎠
+ 𝜕

􏷡𝑝
𝜕𝑧􏷡

⎛
⎜
⎝

𝜕􏷡𝑝
𝜕𝑡􏷡

⎞
⎟
⎠

⎤
⎥
⎦

= 𝑣􏷡
⎡
⎢
⎣

𝜕􏷡𝑝
𝜕𝑥􏷡

⎛
⎜
⎝

𝜕􏷡𝑝
𝜕𝑥􏷡 +

𝜕􏷡𝑝
𝜕𝑧􏷡

⎞
⎟
⎠
+ 𝜕

􏷡𝑝
𝜕𝑧􏷡

⎛
⎜
⎝

𝜕􏷡𝑝
𝜕𝑥􏷡 +

𝜕􏷡𝑝
𝜕𝑧􏷡

⎞
⎟
⎠

⎤
⎥
⎦

(2-77)

= 𝑣􏷣
⎛
⎜
⎝

𝜕􏷣𝑝
𝜕𝑥􏷣 + 2

𝜕􏷣𝑝
𝜕𝑥􏷡𝜕𝑧􏷡 +

𝜕􏷣𝑝
𝜕𝑥􏷣

⎞
⎟
⎠

It should be noted that the assumptions of constant density and velocity are not
necessary because the Lax-Wendroff scheme generalizes our scheme for finding higher
order central difference terms through the recursive formula in Equation 2-78.

(2-78) 𝜕􏷡𝑖𝑝
𝜕𝑡􏷡𝑖

= −􏿶𝜌𝑣􏷡∇ ⋅
1
𝜌∇𝑝􏿹

𝜕􏷡𝑖−􏷡𝑝
𝜕𝑡􏷡𝑖−􏷡

In this case, the higher order time derivatives can be computed from higher order spatial
derivatives by applying the spatial side of the original wave equation.
If we now replace the spatial derivatives using formulas like that in Equation 2-74,
we arrive at a fourth order formula for the second partial derivative in time. After
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calculating all the various weights, replacing partial derivatives with central differences,
and solving for 𝑝𝑖,𝑗,𝑛+􏷠 = 𝑝(𝑖Δ𝑥, 𝑗Δ𝑧, 𝑛Δ𝑡 + Δ𝑡), we arrive at a discrete central difference
formula of general form shown in Equation 2-79.

𝑝𝑖,𝑗,𝑛+􏷠 = −2𝑝𝑖,𝑗,𝑛 + 𝑝𝑖,𝑗,𝑛−􏷠(2-79)

+Δ𝑡􏷡
⎡
⎢
⎢
⎣
𝑣􏷣􏾝

𝑘

􏾝
𝑚

𝑎𝑘,𝑚𝑝𝑖−𝑘,𝑗−𝑚,𝑛 + 𝑣
􏷡
⎛
⎜
⎜
⎝
􏾝
𝑘

𝑏𝑘𝑝𝑖−𝑘,𝑗,𝑛 +􏾝
𝑚

𝑐𝑚𝑝𝑖,𝑗−𝑚,𝑛
⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
+ 𝑠𝑖􏷩,𝑗􏷩,𝑛

For clarity, Δ𝑥􏷡 and Δ𝑦􏷡 have been suppressed, and 𝑠𝑖􏷩,𝑗􏷩,𝑛 represents a source at thelocation specified by 𝑖􏷟 and 𝑗􏷟.
Formulas of this kind are generally called difference equations and provide what is usually
called an explicit forward marching algorithm for data synthesis. Schemes of this kind
are also called quadrature methods because they are integrating the wave equation to
synthesize a response to a given stimulus.
Figure 2-17 shows a simple pyramid model and data. The finite difference data over this
model was synthesized on VAX 11-780 computers in late 1981 and early 1982. At that
time, the calculations necessary to compute each shot required on the order of 48 hours.
Today, most laptops can compute the entire set of 24 shots in minutes.

Figure 2-17. A simple pyramid model and data.

Elastic Finite Differences

We now turn our attention to discrete simulation of vector elastic data. We can do
this using either Equation 2-35 or Equation 2-36. Choosing the first equation leads to
a method that is essentially the same as the pure explicit finite difference algorithm
discussed in the previous section. To gain a slightly different perspective, we base our
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formulation on Equation 2-36 and again we limit ourselves to the 2D case. In somewhat
more familiar notation, Equation 2-36 becomes Equation 2-80.

(2-80)

𝜕𝑣􏷪
𝜕𝑡

= 𝜌−􏷠􏿵𝜕𝜏􏷪,􏷪
𝜕𝑥􏷪

+ 𝜕𝜏􏷪,􏷫
𝜕𝑥􏷫
􏿸

𝜕𝑣􏷫
𝜕𝑡

= 𝜌−􏷠􏿵𝜕𝜏􏷪,􏷫
𝜕𝑥􏷪

+ 𝜕𝜏􏷫,􏷫
𝜕𝑥􏷫
􏿸

𝜕𝜏􏷪,􏷪
𝜕𝑡

= (𝜆 + 2𝜇)𝜕𝑣􏷪
𝜕𝑥􏷪
+ 𝜆𝜕𝑣􏷫

𝜕𝑥􏷫

𝜕𝜏􏷪,􏷫
𝜕𝑡

= 𝜇􏿵𝜕𝑣􏷪
𝜕𝑥􏷫
+ 𝜕𝑣􏷫

𝜕𝑥􏷪
􏿸

𝜕𝜏􏷫,􏷫
𝜕𝑡

= 𝜆𝜕𝑣􏷪
𝜕𝑥􏷪
+ (𝜆 + 2𝜇)𝜕𝑣􏷫

𝜕𝑥􏷫

We note that 𝑣􏷠 is the horizontal velocity and 𝑣􏷡 is the vertical velocity of a particle at
any given position in space.
In this case, Equation 2-42 (the evolution equation) becomes Equation 2-81, where 𝐯, 𝐇,
𝐀 and 𝐁 are given by Equation 2-82 through Equation 2-85, respectively.

(2-81) 𝜕𝐯
𝜕𝑡 = 𝐇𝐯 + 𝐒

(2-82) 𝐯 = 􏿮𝑣􏷠, 𝑣􏷡, 𝜏􏷠.􏷠, 𝜏􏷠,􏷡, 𝜏􏷡,􏷡􏿱
𝑇

(2-83) 𝐇 = 𝐀 𝜕𝐯
𝜕𝑥􏷠

+ 𝐁 𝜕𝐯𝜕𝑥􏷡

(2-84) 𝐀 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 𝜌−􏷠 0 0
0 0 0 𝜌−􏷠 0

𝜆 + 2𝜇 0 0 0 0
0 𝜇 0 0 0
𝜆 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(2-85) 𝐁 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 𝜌−􏷠 0
0 0 0 0 𝜌−􏷠
0 𝜆 0 0 0
𝜇 0 0 0 0
0 𝜆 + 2𝜇 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦
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Recall that the solution of Equation 2-81 has the form of Equation 2-86.

(2-86) 𝐯(𝑡) = 𝑒𝑡𝐇𝐯(0) +􏾙
𝑡

􏷟
𝑒𝜏𝐇𝐒(𝑡 − 𝜏)𝑑𝜏

Equation 2-86 is immediately recognizable as a convolution in time. Thus, the
progression from initial state to final state is really just a recursive convolution at each
time stamp 𝑡. The well known series expansion for 𝑒𝑥 provides an immediate approach to
providing a discrete evolution equation for the solution vector 𝐯(𝑡). The resulting scheme
is equivalent to the Lax-Wendroff methodology and so will not be discussed further. If
you are interested, you are encouraged to work out the mathematical details.

Staggered Grids

What we would like to develop is a finite difference solution to the system in Equation 2-
81. We could, of course, use the higher order difference formulas developed through the
use of the system in Equation 2-72. Several authors (Jean Virieux and A. Lavender) have
suggested that somewhat higher accuracy might be achieved through the use of smaller
time and space increments. Thus, their idea was to simply rewrite Equation 2-72 in the
form of Equation 2-87 and Equation 2-88.

𝑢(𝑥 + 􏸷𝑥
􏷡
) + 𝑢(𝑥 − 􏸷𝑥

􏷡
)

2 = 𝑢(𝑥) + 𝜕𝑢
􏷡

𝜕𝑥􏷡
Δ𝑥􏷡
4 × 2! +

𝜕􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷣
16 × 4!(2-87)

𝑢(𝑥 + Δ𝑥) + 𝑢(𝑥 − Δ𝑥)
2 = 𝑢(𝑥) + 𝜕𝑢

􏷡

𝜕𝑥􏷡
Δ𝑥􏷡
2! +

𝜕􏷣𝑢
𝜕𝑥􏷣

Δ𝑥􏷣
4!(2-88)

This equation, of course, results in a difference formula of the form in Equation 2-89.

(2-89) 𝜕􏷡𝑢
𝜕𝑥􏷡 ≈

𝑖=𝑁

􏾝
𝑖=􏷟

𝑤𝑖𝑢(𝑥 −
𝑖
2Δ𝑥)

Note that in Equation 2-89, the actual derivative is still estimated at a fixed grid point,
but the accuracy is based on half the sampling increment.
At first glance, it might seem that a discrete solution of the system in Equation 2-80
using formulas based on half derivatives would require significantly more storage
than using formulas defined at the normal sampling increments. However, it turns out
that this is not the case if we first simplify the notation by defining [𝑣, 𝑤, 𝜎, 𝜉, 𝜁] =
􏿮𝑣􏷠, 𝑣􏷡, 𝜏􏷠,􏷡, 𝜏􏷠,􏷡, 𝜏􏷡,􏷡􏿱 so that we can then write 𝑣𝑘𝑖,𝑗 = 𝑣􏷠(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑡) for any sampling rate,
and similarly for 𝑤, 𝜎, 𝜉, and 𝜁.
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A fourth order scheme in space and a second order scheme in time to solve Equation 2-
80 can then be expressed as Equation 2-90.

𝑣𝑘+􏷠/􏷡𝑖,𝑗 = 𝑣𝑘−􏷠/􏷡 + 𝜌−􏷠𝑖,𝑗
Δ𝑡
Δ𝑥
􏿴𝜎𝑘𝑖+􏷠/􏷡,𝑗 − 𝜎𝑘𝑖−􏷠/􏷡,𝑗􏿷

+ 𝜌−􏷠𝑖,𝑗
Δ𝑡
Δ𝑧
􏿴𝜎𝑘𝑖,𝑗+􏷠/􏷡 − 𝜎𝑘𝑖,𝑗−􏷠/􏷡􏿷

𝑤𝑘+􏷠/􏷡𝑖+􏷠/􏷡,𝑗+􏷠/􏷡 = 𝑤𝑘−􏷠/􏷡𝑖+􏷠/􏷡,𝑗+􏷠/􏷡 + 𝜌−􏷠𝑖+􏷠/􏷡,𝑗+􏷠/􏷡
Δ𝑡
Δ𝑥
􏿴𝜎𝑘𝑖+􏷠,𝑗+􏷠/􏷡 − 𝜎𝑘𝑖,𝑗+􏷠/􏷡􏿷

+ 𝜌−􏷠𝑖+􏷠/􏷡,𝑗+􏷠/􏷡
Δ𝑡
Δ𝑧
􏿴𝜁𝑘𝑖+􏷠/􏷡,𝑗+􏷠 − 𝜁

𝑘
𝑖+􏷠/􏷡,𝑗􏿷

𝜎𝑘+􏷠𝑖+􏷠/􏷡,𝑗 = 𝜎𝑘𝑖+􏷠/􏷡,𝑗 + 􏿴𝜆 + 2𝜇􏿷𝑖+􏷠/􏷡,𝑗
Δ𝑡
Δ𝑥
􏿴𝑣𝑘+􏷠/􏷡𝑖+􏷠,𝑗 − 𝑣

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷(2-90)

+ 𝜆𝑖+􏷠/􏷡,𝑗
Δ𝑡
Δ𝑧
􏿴𝑤𝑘+􏷠/􏷡𝑖,𝑗+􏷠 − 𝑤

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷

𝜁𝑘+􏷠𝑖+􏷠/􏷡,𝑗 = 𝜁𝑘𝑖+􏷠/􏷡,𝑗 + 􏿴𝜆 + 2𝜇􏿷𝑖+􏷠/􏷡,𝑗
Δ𝑡
Δ𝑥
􏿴𝑤𝑘+􏷠/􏷡𝑖+􏷠,𝑗 − 𝑤

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷

+ 𝜆𝑖+􏷠/􏷡,𝑗
Δ𝑡
Δ𝑧
􏿴𝑢𝑘+􏷠/􏷡𝑖,𝑗+􏷠 − 𝑢

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷

𝜉𝑘+􏷠𝑖,𝑗+􏷠/􏷡 = 𝜉𝑘𝑖,𝑗+􏷠/􏷡 + 𝜇𝑖,𝑗+􏷠/􏷡
Δ𝑡
Δ𝑧
􏿴𝑢𝑘+􏷠/􏷡𝑖,𝑗+􏷠 − 𝑢

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷

+ 𝜇𝑖,𝑗+􏷠/􏷡
Δ𝑡
Δ𝑥
􏿴𝑤𝑘+􏷠/􏷡𝑖+􏷠,𝑗 − 𝑢

𝑘+􏷠/􏷡
𝑖,𝑗 􏿷

The major difference between this and the usual sampling increment scheme is that the
different components of the velocity field are not known at the same node. The actual
size of each grid is identical to that of a more traditional equally spaced approach so
staggering the grid does not change the overall size of the problem
Figure 2-18 and Figure 2-19 demonstrate staggered grid propagation graphically. The
first of these figures show how the model parameters intermingle with data values at
each grid node. The second figure shows how each stencil for each of the propagating
wavefields is applied. Note that going from one time stamp to the next requires you to
cycle through an application of four different stencils.
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Figure 2-18. Distribution of variables and parameters (𝜌, 𝑐𝑖𝑗) in a 2D staggered grid
mesh.

Figure 2-19. Staggered grid fnite difference stencils.

It is clear that synthesizing data over elastic models requires significantly more
computational resources than when the model is acoustic. Simple isotropic elastic
models are described by six volumes, while VTI and full elastic models require seven and
eight volumes, respectively. In addition to this increase in storage, the computational
load increases by at least one order of magnitude.
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Figures 2-20 through 2-24 provide clear examples of simulations over both isotropic
elastic and VTI models. Figure 2-20 illustrates an isotropic elastic version of the
SEG/EAGE salt model along with representative inline compressional and shear
responses. Figure 2-21 and Figure 2-22 show similar images over the Marmousi2
isotropic elastic model. Figure 2-23 and Figure 2-24 provide graphics of the full VTI
model and VTI shot responses.

Figure 2-20. Isotropic elastic SEG/EAGE salt model with compressional and shear
shot response.

Figure 2-21. Marmousi2. Isotropic elastic version of the original Marmousi data.

(a). Compressional Velocity (b). Shear Velocity (c). Density
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Figure 2-22. Marmousi2. Synthetic horizontal particle velocity and vertical
particle velocity.

(a). Horizontal Shot-VSP (b). Vertical Shot-VSP

Figure 2-23. Hess Corporation VTI model. Available from the SEG.

(a). c11 (b). c13 (c). c33

(d). c55 (e). Density
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Figure 2-24. Hess-VTI. Synthetic Particle Velocities

(a). Horizontal Particle Velocity (b). Vertical Particle Velocity

Predictor-Corrector Schemes

Equation 2-86 can be approximated by a first-order difference to produce the Euler or
forward predictor scheme in Equation 2-91.
(2-91) 𝐯[(𝑛 + 1)Δ𝑡] = 𝐯(𝑛Δ𝑡) + Δ𝑡𝐇𝐯(𝑛Δ𝑡)

You can get a second order scheme by averaging the predicted value with the current
value as shown in Equation 2-92.

(2-92) 𝐯[(𝑛 + 1)Δ𝑡] = 𝐯(𝑛Δ𝑡) + Δ𝑡2 [𝐇𝐯(𝑛Δ𝑡) + 𝐇𝐯(𝑛Δ𝑡)]

In this case, the 𝑥􏷠, 𝑥􏷡, and 𝑥􏷢 differentials are replaced with suitable central differences,
and Equation 2-92 is used as a predictor-corrector scheme of second order.

Splitting

It is possible to rewrite Equation 2-81 as Equation 2-93, where 𝐀𝟎, 𝐁𝟎, and 𝐄𝟎 are given
by Equation 2-94 and Equation 2-95, respectively.

(2-93) 𝐄𝜕𝐯𝜕𝑡 = 𝐀𝟎
𝜕𝐯
𝜕𝑥 + 𝐁𝟎

𝜕𝐯
𝜕𝑦
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(2-94) 𝐀𝟎 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐁𝟎 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

(2-95) 𝐄𝟎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜌 0 0 0 1
0 𝜌 0 1 0
0 0 𝜆+􏷡𝜇

(𝜆+􏷡𝜇)􏷫−𝜇􏷫
−𝜇

(𝜆+􏷡𝜇)􏷫−𝜇􏷫
0

0 0 −𝜇
(𝜆+􏷡𝜇)􏷫−𝜇􏷫

𝜆+􏷡𝜇
(𝜆+􏷡𝜇)􏷫−𝜇􏷫

0

0 0 0 0 􏷠
𝜇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If we let 𝐕 = 𝐄𝟎𝐯, 𝐅 = 𝐀𝟎𝐯, and 𝐊 = 𝐁𝟎𝐯, then Equation 2-93 takes the form of
Equation 2-96.

(2-96) 𝜕𝐕
𝜕𝑡 =

𝜕𝐅
𝜕𝑥 +

𝜕𝐊
𝜕𝑦

Equations of the form in Equation 2-96 are called divergence free. These equations are
easily split into two much simpler equations which are then solved by splitting methods.
The simple conceptual idea is to solve the equation in one direction and then the other,
followed by reversing the solution order for the next time stamp. Suppose we let 𝐿𝑥
represent one finite difference update using only the 𝑥 variables and 𝐿𝑦 represent one
finite difference update using only the 𝑦 variables. The general process for updating then
uses the formula in Equation 2-97.
(2-97) 𝐕𝐧+𝟐 = 𝐿𝑥𝐿𝑦𝐿𝑦𝐿𝑥𝐕

𝑛

Thus, all we have to do is specify one or the other of the solution schemes 𝐿𝑥, or 𝐿𝑦, and
we will have the other, completely by symmetry. A fourth order in space, second order
in time predictor-corrector scheme for 𝐿𝑥 takes the form of Equation 2-98.

𝐕𝑖,𝑗 = 𝐕𝑘
𝑖,𝑗 +

Δ𝑡
Δ𝑥
􏿮(7𝐅𝑘𝑖+􏷠,𝑗 − 𝐅

𝑘
𝑖,𝑗) − (𝐅

𝑘
𝑖+􏷡,𝑗 − 𝐅

𝑘
𝑖+􏷠,𝑗)􏿱

(2-98)
𝐕𝑘+􏷠
𝑖+􏷠,𝑗 = 1

2􏿰𝑉
𝑘
𝑖,𝑗 + 𝐕𝑖,𝑗 +

Δ𝑡
Δ𝑥
􏿺(7𝐅𝑖,𝑗 − 𝐅𝑖−􏷠,𝑗) − (𝐅𝑖−􏷡,𝑗 − 𝐅𝑖−􏷠𝑗)􏿽􏿳
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Propagation Stability

Each of the various finite difference methods you might construct contains a ratio of
the form 𝑣􏸷𝑡

􏸷𝜈
, where 𝜈 is one of the spatial increments Δ𝑥, Δ𝑦 or Δ𝑧. It might come as

somewhat of a surprise that if this ratio is too large, the propagation scheme it helps
define will not be stable. An unstable scheme will eventually produce excessively large
numbers and exceed the numerical accuracy of the machine it is running on.
Derivation of a formula that can provide an accurate bound for these ratios requires
that we first relate frequency to wavenumber. To do this in a simple manner, we begin
with the 1-D version of the Lax-Wendroff discrete pressure equation (Equation 2-17), as
shown in Equation 2-99, where 𝑣 is velocity.

(2-99) 1
Δ𝑡􏷡

⎛
⎜
⎜
⎝
𝑝(𝑡 + Δ𝑡) − 2𝑝(𝑡) + 𝑝(𝑡 − Δ𝑡) −

𝑖=∞

􏾝
𝑖=􏷡

𝜕􏷡𝑖𝑝
𝜕𝑡􏷡𝑖

Δ𝑡􏷡𝑖

2𝑖!

⎞
⎟
⎟
⎠
= 𝑣􏷡𝜕

􏷡𝑝
𝜕𝑡􏷡

To make our life a bit easier, we assume a solution of the form exp[𝑖𝑘𝑥𝑥 − 𝜔Δ𝑡] and
ignore the higher order terms to obtain the dispersion relation in Equation 2-100 and
Equation 2-101.

(2-100) 1
Δ𝑡􏷡

[2 cos(𝜔Δ𝑡) − 2] = 4
Δ𝑡􏷡

sin􏷡􏿶
𝜔Δ𝑡
2 􏿹 = 𝑣􏷡𝑘

􏷡
𝑥

(2-101) 2
Δ𝑡 sin􏿶

𝜔Δ𝑡
2 􏿹 = 𝑣𝑘𝑥

Although the true dispersion relation for the 1-D equation has 𝑐 = 𝜔
𝑘𝑥
, Equation 2-102 says

that the discrete velocity is greater than the true velocity.

(2-102) 𝑣̄ = 𝑣
􏸒􏸈􏸍(𝜋𝑓􏸷𝑡)
𝜋𝑓􏸷𝑡

Thus, to avoid explosive growth, we must have the relation in Equation 2-103.

(2-103) Δ𝑡 ≤ 2
𝜋􏿶
Δ𝑥𝑚𝑖𝑛
𝑣𝑚𝑎𝑥

􏿹

A similar analysis shows that to achieve stable isotropic elastic (𝑃 − 𝑆𝑉) waves, we must
have the relation in Equation 2-104.

(2-104) Δ𝑡 ≤ Δ𝑥𝑚𝑖𝑛

􏽯𝑣
􏷡
𝑃 + 𝑣􏷡𝑆𝑉
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The important aspect of this analysis is that we cannot choose our time step size
arbitrarily. We must use the appropriate version of Equation 2-103 or Equation 2-104
to assure ourselves that the calculations we perform and, consequently, the waveform we
produce will not grow exponentially.

Model Boundaries

This section describes the things we must do to handle model boundaries, which can
consist of either free or non-free surfaces.

Free Surfaces

Handling a free surface is probably the most complex of the various problems that arise
in seismic modeling exercises. The literature on this aspect of the synthesis is quite vast
and outside the scope of what we wish to discuss here. We leave detailed investigation of
this to you, if you are interested.
However, one of the more appealing methods is discussed by Lavendar in his 1988 paper
on P-SV modeling, and illustrated in Figure 2-25. The essential difference lies in how
each layer is handled. Turning free surface reverberations on (or off) controls whether
or not synthetic data contains multiples and ghosts.

Figure 2-25. Free Surface versus Non-Free Surface Layers

(a). Free Surface Boundary Layers (b). Non Free Surface Boundary Layers

The free surface at the top of the model is padded above with a fictitious set of nodes.
Since a free surface implies that no normal or shear stresses are active there, we can set
𝜏􏷡,􏷡 = 0 and 𝜏􏷠,􏷡 = 0 at the top. The shear stress boundary condition is handled by setting
it to zero at 𝑧 = 0 as well. The normal stress is not defined at the top boundary but is
forced to zero by making the normal stress antisymmetric for the first two rows above
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the free surface, as shown in Equation 2-105.
(𝜏􏷡􏷡)−􏷠,𝑖 = −(𝜏􏷡􏷡)􏷟,𝑖(2-105)
(𝜏􏷡􏷡)−􏷡,𝑖 = −(𝜏􏷡􏷡)􏷠,𝑖

Non Free Surfaces

There are a variety of approaches for handling the other boundaries in a typical seismic
Earth model. The three most popular methods are what are called sponge boundary
conditions: Absorbing, boundary conditions, and the so-called perfectly matched layers.

Sponge Boundaries—Absorbing

The idea behind sponge boundary conditions is to modify the propagating equation by
adding viscosity to the equation along the boundary. This is normally accomplished by
writing Equation 2-106, where 𝛾 is an absorbing parameter chosen to produce a wave
that decreases in amplitude with distance.

(2-106) 𝜕
𝜕𝑡􏿰

𝑝
𝑞 􏿳 =

⎡
⎢
⎣

−𝛾 1
−𝜌𝑣􏷡∇ ⋅ 􏷠

𝜌
∇ −𝛾

⎤
⎥
⎦
􏿰
𝑝
𝑞 􏿳 + 􏿮 0 􏿱

The value of 𝛾 is usually chosen to have exponential decay within the defined boundary
zone and is zero within the model dimensions. Note that when 𝛾 = 0, the solution to the
equation is, in fact, 𝑝.
For the finite element method, sponge boundaries can be implemented by changing the
definition of 𝜑(𝑈,𝑉) to Equation 2-107, where 𝛼 and 𝛽 are the damping factors in each of
the boundary layers.

(2-107) 𝜑(𝑈,𝑉) = (1 + 𝛼)􏾙
􏸵

𝑘􏷡

𝜌 𝑈𝑉𝑑Ω + 􏿴𝛽 + 1􏿷􏾙
􏸵

1
𝜌∇𝑈 ⋅ ∇𝑉𝑑Ω

Sponge Boundaries—Paraxial Boundary Conditions

Paraxial boundaries are based on the one-way wave equation and within the boundary
layers take the form in Equation 2-108, where |𝛼𝑗| < 𝜋

􏷡
for all 𝑗 (Higdon 1991).

(2-108)
⎧⎪⎪
⎨⎪⎪⎩

𝑗=𝐽

􏾠
𝑗=􏷠

􏿰􏿴𝑐𝑜𝑠𝛼𝑗􏿷
𝜕
𝜕𝑡 − 𝑣

𝜕
𝜕𝑥􏿳

⎫⎪⎪
⎬⎪⎪⎭

𝑝 = 0
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This equation works because each factor, cos(𝛼𝑗)𝜕𝑝𝜕𝑡 − 𝑣
𝜕𝑝
𝜕𝑥
, is an annihilator of any wave

arriving at an angle 𝛼𝑗.

Sponge Boundaries—Perfectly Matched Layers

Perfectly matched layers are a modern treatment of the sponge boundary conditions. In
this setting, the spatial derivatives are modified so that we have Equation 2-109.

(2-109) 𝜕
𝜕𝑥 ⟶

1
1 + 𝑖𝜎(𝑥)

𝜔

𝜕
𝜕𝑥

FEM versus FDM Differences

The finite element method (FEM) and finite difference method (FDM) are alternative
ways of approximating solutions of partial differential equations. The differences
between FEM and FDM are:

• FDM is an approximation to the differential equation while FEM is an
approximation to its solution.

• The most attractive feature of FEM is its ability to handle complicated geometries
(and boundaries) with relative ease. While FDM is restricted, in its basic form, to
handling rectangular shapes and simple alterations of those shapes, the handling of
geometries in FEM is theoretically straightforward.

• The most attractive feature of FDM is that it can be very easy to implement and
does not require the inversion of an extremely large matrix.

• In some cases, FEM can be considered to be equivalent to FDM. Choosing basis
functions as either piecewise constant functions or Dirac delta functions produce
a FDM type method. In both approaches, the approximations are defined on the
entire domain, but need not be continuous.

• FEM is generally considered to be more mathematically sound then FDM, and
more accurate. Typically, the quality of the approximation between grid points is
excellent in FEM but poor in FDM.

• The quality of an FEM approximation is often higher than in the corresponding
FDM approach, but this is extremely problem dependent. There are numerous
examples to the contrary.

Generally, FEM is the method of choice in all types of structural analysis problems, but it
has not proven to be of tremendous value in seismic simulation or migration. The biggest
reason for this is the tremendous size of the impedance matrix, 𝐒, which means it is quite
difficult to handle.

Chapter 2. Seismic Modeling 59



Model Boundaries Panorama Technologies

Two-Way Implicit Modeling

With the exception of the finite element method, the two-way approaches described
earlier are what are usually referred to as explicit schemes. They forward march source
samples one step at a time. The finite element method is close to an implicit approach
since finding the solution requires the inversion of a matrix. There are certainly
approaches to seismic modeling that can be framed in an implicit sense, but those are
equation dependent and will not be discussed further in this book.

One-Way Modeling

Although its not quite mathematically correct, Equation 2-17 is sometimes factored into
two first order equations. The factorization leads to two separate first-order equations in
𝑧. Equation 2-110 illustrates the nature of the factorization.

(2-110)
⎛
⎜
⎜
⎝

𝜕
𝜕𝑧 −􏽱

1
𝑣􏷡
𝜕􏷡

𝜕𝑡􏷡
− 𝜕
𝜕𝑥
1
𝜌
𝜕
𝜕𝑥

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜕
𝜕𝑧 +􏽱

1
𝑣􏷡
𝜕􏷡

𝜕𝑡􏷡
− 𝜕
𝜕𝑥
1
𝜌
𝜕
𝜕𝑥

⎞
⎟
⎟
⎠
𝑝 = 0

In the case where the density, 𝜌, is constant, or, even better, equal to 1, the equations
simplify further and are what are usually used when applied as part of a migration.
Clearly, the thought process to arrive at this product assumes that the two cross-product
terms commute, and thus their difference is zero, but this assumption of commutation
is simply not mathematically correct. Nevertheless, is can be shown that suitable
approximations to either of the first-order equations that result from the factorization
honor the wavefront travel times of the original two-way equation. Because wavefields
are no longer allowed to travel in any direction other than upward or downward, the
amplitude of the propagation cannot be correct.
In the case of normal full-wave propagation, the impinging wavefield energy creates
a new source at the point of impact. Regardless of source wavefield type (that is,
compressional or shear), the new source radiates energy in all directions weighted by the
reflection strength for upward traveling wave, transmission strength for the downward
traveling waves, and angle of the reflecting bed. This is an extremely important concept
for all of the discussion that follows. It actually allows us to think in terms of separating
wavefields into upward only and downward only propagation directions. Each factor in
Equation 2-110 does precisely that. The first factor governs downward only traveling
waves while the second permits only upward traveling waves.
Once a suitable approximation for the square root term has been found, almost any of
these methods can be applied to synthesize data of the type required by the equation.
That is, when the downward factor is used, you can propagate wavefields downward
but not upward; when the upward factor is used, you can propagate wavefields upward
but not downward. Thus, these equations greatly limit the extent to which full wavefield
seismic can be generated.
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One Way Implicit Finite Difference Methods

There are many known approximations for the square root in Equation 2-110. Each
such approximation has its own pros and cons, and each has its own unique limit to
the downward propagation angle it will tolerate. One of the better known square-root
approximations is Equation 2-111.

(2-111) 􏽮1 − 𝑋􏷡 = 1 − 4 − 3𝑋
􏷡

4 − 𝑋􏷡

If we apply this approximation to the square root in Equation 2-110, we obtain
Equation 2-112.

(2-112)
􏽱
1
𝑣􏷡
𝜕􏷡

𝜕𝑡􏷡
− 𝜕
𝜕𝑥
1
𝜌
𝜕
𝜕𝑥 ≈

1
𝑣
𝜕
𝜕𝑡 −

􏷣
𝑣􏷫

𝜕􏷫

𝜕𝑡􏷫
− 3 𝜕

𝜕𝑥
􏷠
𝜌
𝜕
𝜕𝑥

􏷣
𝑣􏷫

𝜕􏷫

𝜕𝑡􏷫
− 𝜕

𝜕𝑥
􏷠
𝜌
𝜕
𝜕𝑥

Equation 2-112 leads directly to a downward propagation equation of the rather complex
form in Equation 2-113.

(2-113) 𝜕𝑝
𝜕𝑧 =

1
𝑣
𝜕𝑝
𝜕𝑡 −

􏷣
𝑣􏷫
𝜕􏷫𝑝
𝜕𝑡􏷫
− 3𝜕𝑝

𝜕𝑥
􏷠
𝜌
𝜕𝑝
𝜕𝑥

􏷣
𝑣􏷫

𝜕􏷫

𝜕𝑡􏷫
− 𝜕

𝜕𝑥
􏷠
𝜌
𝜕
𝜕𝑥

At first glance, this equation may seem to be somewhat intractable for any finite
difference approach. The trick to putting this into a more useable form is to clear
fractions to obtain Equation 2-114.
(2-114)

⎛
⎜
⎝

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

− 𝜕𝑝𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥
⎞
⎟
⎠

𝜕𝑝
𝜕𝑧 =

⎛
⎜
⎝

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

− 𝜕𝑝𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥
⎞
⎟
⎠

1
𝑣
𝜕𝑝
𝜕𝑡 + 3 𝜕𝑝𝜕𝑥

1
𝜌
𝜕𝑝
𝜕𝑥 −

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

Equation 2-114 in 3D becomes Equation 2-115.
⎛
⎜
⎝

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

− 𝜕𝑝𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 −

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦
⎞
⎟
⎠

𝜕𝑝
𝜕𝑧 =

⎛
⎜
⎝

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

− 𝜕𝑝𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 −

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦
⎞
⎟
⎠

1
𝑣
𝜕𝑝
𝜕𝑡(2-115)

+ 3 􏿶
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 +

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦􏿹 −

4
𝑣􏷡
𝜕􏷡𝑝
𝜕𝑡􏷡

If we then approximate the derivatives via some form of the finite difference stencils
discussed in previous sections, we can rearrange the problem, converting Equation 2-113
into a matrix style system of the form in Equation 2-116.
(2-116) 𝐀𝑝(𝑧 + Δ𝑧) = 𝐁𝑝(𝑧)
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Solving this system amounts to inverting 𝐀. The need to employ finite-differences in
time can make this a very complicated task in 3D. Consequently, this XT method has not
enjoyed a lot of popularity in either forward modeling or imaging for 3D projects.

Fourier-Based Methods

This section discusses the several Fourier-based methods for solving modeling and
imaging projects.

FX Finite Difference Methods

The factorization in Equation 2-110 can also be done in the Fourier or frequency domain
by simply rewriting it in the form of Equation 2-117.

(2-117)
⎛
⎜
⎜
⎝

𝜕
𝜕𝑧 − 𝑖􏽱

𝜔􏷡

𝑣􏷡 +
𝜕
𝜕𝑥
1
𝜌
𝜕
𝜕𝑥

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜕
𝜕𝑧 + 𝑖􏽱

𝜔􏷡

𝑣􏷡 +
𝜕
𝜕𝑥
1
𝜌
𝜕
𝜕𝑥

⎞
⎟
⎟
⎠
𝑝 = 0.

In this case, Equation 2-114 becomes Equation 2-118.

􏿶
4𝜔􏷡

𝑣􏷡 𝑝 +
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥􏿹

𝜕𝑝
𝜕𝑧 = 􏿶

4𝜔􏷡

𝑣􏷡 𝑝 +
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥􏿹

𝑖𝜔
𝑣 𝑝(2-118)

− 3 𝜕𝑝𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 −

4𝜔􏷡𝑝
𝑣􏷡

In 3D, Equation 2-118 becomes Equation 2-119.

􏿶
4𝜔􏷡

𝑣􏷡 𝑝 +
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 +

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦􏿹

𝜕𝑝
𝜕𝑧 = 􏿶

4𝜔􏷡

𝑣􏷡 𝑝 +
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 +

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦􏿹

𝑖𝜔
𝑣 𝑝(2-119)

− 􏿶3
𝜕𝑝
𝜕𝑥
1
𝜌
𝜕𝑝
𝜕𝑥 +

𝜕𝑝
𝜕𝑦
1
𝜌
𝜕𝑝
𝜕𝑦􏿹 −

4𝜔􏷡𝑝
𝑣􏷡

Equation 2-119 has the generalized form in Equation 2-120.
(2-120) 𝐀(𝜔)𝑝(𝑧 + Δ𝑧) = 𝐁(𝜔)𝑝(𝑧)

Once again, inversion of 𝐀(𝜔) is a necessity. In the frequency domain, this matrix is
normally diagonally dominant and usually relatively easy to compute. Note that we are
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solving this as an equation in 𝑧 for each 𝜔. We are in effect computing 𝑝(𝑧 + Δ𝑧) from
𝑝(𝑧) so that the 𝐀(𝜔) matrix has two dimensions and not three. This further simplifies the
issue and makes this method one of the more tractable one way implicit methodologies.
Nevertheless, the process is not straightforward and usually requires a splitting approach
to make it efficient.
One clear advantage of this approach to one-way forward modeling is the elimination
of finite difference approximations in time. In the frequency domain, the partial
differentials are simple complex multiplications. Since they are applied across the entire
frequency band, the temporal derivatives are as precise as they can be.

Pseudo-Spectral Methods

Pseudo-spectral methods are based on the utilization of Fourier transforms in the
calculation of spatial derivatives (see D. Kosloff and E. Baysal). Again, using the 2D
version of Equation 2-17 as the base, we first apply a central difference scheme in the
time direction and then use Fourier transforms to calculate all spatial derivatives. As an
example, consider the discrete formulation in Equation 2-121, where 𝐿 represents the
discrete operator containing the spatial derivatives in both 𝑥 and 𝑧.
(2-121) 𝑝𝑘+􏷠𝑖,𝑗 = 2𝑝𝑘𝑖,𝑗 − 𝑝

𝑘−􏷠
𝑖,𝑗 − 𝑣􏷡Δ𝑡􏷡𝐿𝑝𝑘𝑖,𝑗 + 𝑠

𝑘
𝑖,𝑗

To calculate the discrete version of the term 𝜕𝑝
𝜕𝑥

􏷠
𝜌
𝜕𝑝
𝜕𝑥
, we first Fourier transform in the x-

direction on 𝑝, multiply by the discrete-spatial wave-number 𝑖𝑘𝑥, and then inverse Fourier
transform to get 𝜕𝑝

𝜕𝑥
.

This is followed by a repeat of a Fourier-multiply-Fourier inverse step to get 𝜕𝑝
𝜕𝑥

􏷠
𝜌
𝜕𝑝
𝜕𝑥
.

When the process has been completed along all x-lines, a similar calculation is performed
to get 𝜕𝑝

𝜕𝑧
􏷠
𝜌
𝜕𝑝
𝜕𝑧
.

Working in 3D is just as simple and requires only that we perform one more transform
sequence in the y direction.
The great advantage of this process is accuracy. Using the Fourier transform for the
spatial derivatives is identical to applying a central difference with the number of
coefficients equal to the half length of the discrete transform.

Once we understand that the Fourier transformation converts differentials, 𝜕𝑢
𝜕𝑥
, into

frequency domain multiplications of the form 𝑖𝑘𝑥𝑢(𝑥), it is quite natural to want to
Fourier transform Equation 2-17 over all variables and convert the resulting PDE into
a simple algebraic equation. Unfortunately, because the velocity, 𝑣(𝑥, 𝑦, 𝑧), and the
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density, 𝜌(𝑥, 𝑦, 𝑧), are both potentially functions of three independent variables, Fourier
transformation would result in a frequency domain convolution, which is not a much
simpler algebraic equation.

Constant Velocity FK Modeling

When the velocity, 𝑣, is constant, Fourier transformation over all the variables produces
Equation 2-122 everywhere except at the source.
(2-122) (𝑘􏷡𝑧 + 𝑘

􏷡
𝑧 −

𝜔􏷡

𝑣􏷡 ) 𝑢(𝑘𝑧, 𝑘𝑥, 𝜔) = 0

Thus, for 𝑘𝑧 and 𝑢(𝑘𝑧, 𝑘𝑥, 𝜔), we get Equation 2-123 and Equation 2-124, respectively.

(2-123) 𝑘𝑧 = ±􏽰
𝜔􏷡

𝑣􏷡 − 𝑘
􏷡
𝑥

(2-124) 𝑢(𝑘𝑧, 𝑘𝑥, 𝜔) = 𝑢
⎛
⎜
⎝􏽰

𝜔􏷡

𝑣􏷡 − 𝑘
􏷡
𝑥, 𝑘𝑥, 𝜔

⎞
⎟
⎠

The key point is that we only need to know 𝑝(𝑧 = 0, 𝑥, 𝑡) to determine 𝑘𝑧 through a Fourier
transform over 𝑥 and 𝑡.
Thus, to do modeling, we simply define 𝑝(0, 𝑥􏷟, 𝑡) = 𝑠(𝑥􏷟, 𝑡), set 𝑝(0, 𝑥, 𝑡) = 0 elsewhere,
Fourier transform over 𝑥 and 𝑡, define 𝑝(𝑘𝑧, 𝑘𝑥, 𝜔) through Equation 2-123, and then
inverse transform to get our one-way modeled data 𝑝(𝑧, 𝑥, 𝑡). Whether this represents
upward or downward traveling waves is purely dependent on the choice of sign in
Equation 2-123.
Since this method is almost totally dependent on extremely efficient Fourier transforms,
you would think that modeling using this method would be very popular. Unfortunately,
the equations in this section are valid only when the velocity is constant. As we will
see, overcoming this limitation has produced many of the modern one-way algorithms
for imaging, but has not resulted in a satisfactory formalism for detailed high resolution
modeling. Methods in this section can progress wavefields in one direction or the other,
but unlike the two-way methods, they do not automatically generate waves traveling in
every possible direction.

Phase-Shift Modeling

When the velocity, 𝑣 = 𝑣(𝑧), is just a function of 𝑧 alone, and the density, 𝜌, is constant,
we can Fourier transform over 𝑡, 𝑥 to get Equation 2-125.

(2-125) 𝜕􏷡𝑝
𝜕𝑧􏷡 = 􏿰−

𝜔􏷡

𝑣􏷡(𝑧) + 𝑘
􏷡
𝑥􏿳 𝑝
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If we now factor Equation 2-125 and choose the downward propagating equation as the
one of interest, we can write Equation 2-126.

(2-126) 𝜕𝑝
𝜕𝑧 = −

⎡
⎢
⎢
⎣􏽱

𝜔􏷡

𝑣􏷡(𝑧) − 𝑘
􏷡
𝑥

⎤
⎥
⎥
⎦
𝑝

If we think of this equation as a first order ordinary differential equation in 𝑧, we can
immediately write its solution in the form of Equation 2-127, where 𝑘𝑧 has the value in
Equation 2-128.
(2-127) 𝑝(𝑘𝑥, 𝑧 + Δ𝑧, 𝜔) = exp[𝑖𝑘𝑧Δ𝑧] 𝑝(𝑘𝑥, 𝑧, 𝜔)

(2-128) 𝑘𝑧 =
􏽱

𝜔􏷡

𝑣􏷡(𝑧) − 𝑘
􏷡
𝑥

Note that the exponential term in Equation 2-127 represents a pure phase shift for each
frequency 𝜔. The process is visualized quite naturally in Figure 2-26. Starting at the
top for downward propagation and at the bottom for upward propagation, the one-way
phase shift method simply shifts the wavefield from one layer to the next in a simple
and straightforward manner. To start the modeling process, you initialize the wavefield
𝑝(𝑧 = 0, 𝑥􏷟, 𝑡) = 𝑠(𝑥􏷟, 𝑡) at 𝑧 = 0 with a suitable source, Fourier transform over time and
begin downward propagation using Equation 2-127

Figure 2-26. FK domain depth-slice by depth-slice continuation for 𝑣(𝑧) velocity
models. This is called phase shift modeling.

While we recognize that the accuracy of the phase-shift method is highly dependent on
the number of terms we use to approximate the series for the exponential, the ultimate
accuracy is dependent only on the current computer language approximations for the
exponential and the square root. The ultimate limitation of this method, like the pure FK
method discussed previously, is the restriction that the velocity vary only in the vertical
direction. The frequency slice process specified by Equation 2-127 has an immediate and
more or less obvious extension to 3D.
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Phase Shift Plus Interpolation (PSPI) Modeling

When the sound speed, 𝑣(𝑥, 𝑧), varies laterally as well as vertically, the wavefield shifts
are no longer uniform. One approach to handling this problem is to first perform a
number, 𝑛, of pure phase shifts using a uniform set of of velocities lying between the
minimum and maximum values of 𝑣(𝑥, 𝑧). Interpolation of the appropriate wavefields at
any given 𝑥 along the common depth slice at 𝑧 approximates the wavefield corresponding
to the true velocity 𝑣(𝑥, 𝑧) at 𝑥. Figure 2-27 illustrates the concept.

Figure 2-27. PSPI FK domain depth-slice by depth-slice continuation for 𝑣(𝑥, 𝑧)
velocity models.

The problem with this approach revolves around the complexities of performing the
interpolation. Key questions arise as to whether interpolation in space-time or frequency-
space is the more optimum method. Because of the difficulties associated with the need
for interpolation, PSPI continuations frequently have difficulty imaging steeply dipping
events. As a result, considerable research focused on finding a better approach.

Dual Domain or FKX One-Way Methods

Because of the incredible efficiency of the Fast Fourier transform, it did not take long
for several authors to investigate the possibility of avoiding the need for wavefield
interpolation by using approximations that split the computations between the FK and
FX domains. This required multiple transforms for each up or down shift, but because
of the efficiency of the Fourier transform, this was considered worth the extra effort.
The idea underlying this form of the process is again a Taylor series approximation. If
the velocity, 𝑣(𝑥, 𝑧) varies laterally, the first-term Taylor series expansion of the 𝑘𝑧 term
in Equation 2-128 around some fixed reference velocity, 𝑣𝑟𝑒𝑓 = 𝑣𝑟𝑒𝑓(𝑧), has the form of
Equation 2-129, where 𝑠𝑟𝑒𝑓 = 􏷠

𝑣𝑟𝑒𝑓
is the reference slowness and 𝑘𝑟𝑒𝑓𝑧 = 􏽯𝑠

􏷡
𝑟𝑒𝑓𝜔􏷡 − 𝑘􏷡𝑥.

(2-129) 𝑘𝑧 = 𝑘
𝑟𝑒𝑓
𝑧 + 𝑑𝑘𝑧

𝑑𝑠𝑟𝑒𝑓
Δ𝑠
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In this case,

(2-130) 𝑑𝑘𝑧
𝑑𝑠𝑟𝑒𝑓

= 𝜔

􏽯𝑠
􏷡
𝑟𝑒𝑓𝜔􏷡 − 𝑘􏷡𝑥

Using the approximation in Equation 2-111, a little algebraic manipulation yields
Equation 2-131, so that Equation 2-132, where 𝑘􏷡𝑟𝑒𝑓 = 𝜔􏷫

𝑣􏷫𝑟𝑒𝑓
.

(2-131) 𝑑𝑘𝑧
𝑑𝑠𝑟𝑒𝑓

= 𝜔
⎡
⎢
⎣
1 + 2𝑘􏷡𝑥

4𝑘􏷡𝑟𝑒𝑓 − 3𝑘
􏷡
𝑥

⎤
⎥
⎦

(2-132) 𝑘𝑧 ≈ 􏽯𝑘
􏷡
𝑟𝑒𝑓 − 𝑘

􏷡
𝑥 + 𝜔Δ𝑠 + 𝜔Δ𝑠

2𝑘􏷡𝑥
4𝑘􏷡𝑟𝑒𝑓 − 3𝑘

􏷡
𝑥

You could, of course, use additional terms of the Taylor series to try to increase the
accuracy of the approximation, but, as we will see, the third term in Equation 2-132 can
be quite difficult to implement.

Split-Step Methods

Paul Stoffa at the University of Texas in Austin was one of the first to utilize Equation 2-
132. He and his colleagues in Austin and at Delft University in Holland simply truncated
the series for 𝑘𝑧 to Equation 2-133, and then noted that the first term was just a phase
shift in the 𝐹𝐾 domain while the second is a similar phase-shift in the 𝐹𝑋 domain.

(2-133) 𝑘𝑧 ≈ 􏽯𝑘
􏷡
𝑟𝑒𝑓 − 𝑘

􏷡
𝑥 + 𝜔􏿰

1
𝑣 −

1
𝑣𝑟𝑒𝑓

􏿳

Summing over all frequencies produces the image at the current Δ𝑧. Fourier
transforming back to the 𝐹𝐾 domain begins the process for the next 𝑧 + Δ𝑧. Although
this method proves to be somewhat inaccurate when compared to good implementations
of PSPI, it is significant in that it requires no interpolation at all. It provides a direct
correction in the FX domain after an initial phase shift.

Extended Split Step Methods

The extended phase screen method is probably more accurately referred to as split-step
plus interpolation or 𝑆𝑆𝑃𝐼. It attempts to increase the overall accuracy of the preceding
process by using multiple reference velocities in exactly the same manner as 𝑃𝑆𝑃𝐼.
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Higher Order FKX Methods

Higher order methods based on Equation 2-132 must find ways to handle the third term,
Equation 2-134.

(2-134) 𝑘𝑓𝑑𝑧 = 𝜔Δ𝑠 2𝑘􏷡𝑥
4𝑘􏷡𝑟𝑒𝑓 − 3𝑘

􏷡
𝑥

While it might appear that this term can be handled directly by some form of transform
between the 𝐹𝐾 and 𝐾𝑋 or maybe 𝐹𝑋 domains, the denominator implies the existence
of a singularity and therefore a potentially difficult instability. Two approaches have
evolved in an attempt to handle the instability. One is the phase-screen or pseudo-phase
screen method of Ru Shan Wu at the University of California at Santa Cruz and the other
is the Fourier Finite Difference (FFD) method of D. Ristow and T. Rühl. In fact, both of
these methods use what is called an implicit finite difference technique to implement the
term stably.
Note that from an implementation point of view, what we do in practice is first form
Equation 2-135, inverse Fourier transform over 𝑘𝑥 and form Equation 2-136, and finally
try to compute Equation 2-137 in some domain or the other.

(2-135) 𝑝􏷠(𝑘𝑥, 𝑧 + Δ𝑧, 𝜔) = exp (𝑖𝑘
𝑟𝑒𝑓
𝑧 Δ𝑧) 𝑝(𝑘𝑥, 𝑧, 𝜔)

(2-136) 𝑝􏷡(𝑥, 𝑧 + Δ𝑧, 𝜔) = exp (𝑖𝜔Δ𝑠Δ𝑧)

(2-137) 𝑝(𝑥, 𝑧 + Δ𝑧, 𝑡) = exp (𝑖𝑘𝑓𝑑𝑧 Δ𝑧) 𝑝􏷡(𝑘𝑥, 𝑧, 𝜔)

It should be clear that because the third term contains both spatial and wavenumber
terms, this calculation might not be straightforward. The actual trick is to approximate
the exponential one more time in the form of Equation 2-138, substitute into Equation 2-
137, and clear fractions to get Equation 2-139.

(2-138) exp (𝑖𝑘𝑓𝑑𝑧 Δ𝑧) =
1 + 𝑖𝜔Δ𝑠 􏷡𝑘􏷫𝑥

􏷣𝑘􏷫𝑟𝑒𝑓−􏷢𝑘
􏷫
𝑥

􏸷𝑧
􏷡

1 − 𝑖𝜔Δ𝑠 􏷡𝑘􏷫𝑥
􏷣𝑘􏷫𝑟𝑒𝑓−􏷢𝑘

􏷫
𝑥

􏸷𝑧
􏷡

(2-139) 􏿴4𝑘􏷡𝑟𝑒𝑓 − 3𝑘
􏷡
𝑥 − 𝑖𝜔Δ𝑠2𝑘

􏷡
𝑥Δ𝑧􏿷 𝑝(𝑘𝑥, 𝑧 + Δ𝑧, 𝜔) = 􏿴4𝑘

􏷡
𝑟𝑒𝑓 − 3𝑘

􏷡
𝑥 + 𝑖𝜔Δ𝑠2𝑘

􏷡
𝑥Δ𝑧􏿷 𝑝􏷡(𝑘𝑥, 𝑧, 𝜔)
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If we now inverse transform back to the 𝐹𝑋 domain, we see that each 𝑘􏷡𝑥 term becomes
a second order partial derivative with respect to 𝑥. When these are replaced by central
difference approximations, we arrive at a matrix equation of the form in Equation 2-140,
so that Equation 2-141.
(2-140) 𝐀𝐩 = 𝐁𝐩𝟐

(2-141) 𝐩 = 𝐀−𝟏𝐁𝐩􏷡

What is nice about this method is that the matrix 𝐀 is usually sparse with a limited
number of terms along the diagonal, so in 2D, as described here, inverting the matrix is
relatively fast. Moreover, the result is easily stabilized.
However, in 3D, the equivalent 𝐀 matrix is huge and is quite difficult to invert. The
problem is usually solved by a splitting technique similar to that in previous sections.
Essentially, Equation 2-139 is solved in the x-direction, and then the similar y-direction
formula is used to provide a solution in that direction. These methods are alternated
as the process proceeds depth-slice by depth-slice until all data is propagated to the
appropriate depth.
Figure 2-28 is a simple graphic of how one-way propagators work. Figure 2-28(a)
provides the schema for synthesizing purely downward traveling waves, and part (b) is
the corresponding propagator for purely upward traveling waves. While these kinds of
propagators limit the type of wave that can be propagated, their significance lies mostly
in the fact that they are much more computationally efficient then the full two-way
versions shown in previous figures. One-way computations can be performed on a depth-
slice by depth-slice basis so there is no need to fill in the value at every previous node
before continuing. Moreover, extremely efficient Fourier domain methods can be used
to reduce computational complexity even further. As a result, one-way methods have
enjoyed great popularity and have been the subject of considerable research.

Figure 2-28. A one-way propagator. The black dots have been removed from the
propagating stencil. Graphic (a) calculates only downward traveling
waves while (b) only permits upward traveling waves.

Chapter 2. Seismic Modeling 69



A Word About Sources Panorama Technologies

A Word About Sources

This section describes the sources used to generate the sound waves that are at the center
of the seismic migration and modeling process.

Compressional and Shear Point Sources

So far the discussion has been focused on compressional, wave-point sources.
Theoretically, such sources radiate energy uniformly in all directions. Mainly because
they are easy to generate, point-sources represent the norm in modern seismic data
synthesis and acquisition. In media that support shear wave propagation, pure
compressional sources also generate shear waves uniformly in all directions. In contrast,
real shear wave sources are not so easy to generate, and are impossible to generate in
any liquid. Over any media that supports their propagation, shear waves are frequently
generated using some kind of scratcher or angled compressional source. In the first
case, the scratcher is actually generating a physical source that is fundamentally angled
downward, while in the second case the angled compressional source generates most
of its energy close to the angle of the compression gun. In either case, the resulting
converted-shear wave is frequently too weak to generate sufficient energy for practical
use.

Plane Wave Sources

Plane wave sources are all but impossible to generate in the field. However, any
reasonable set of shot profiles, 𝑢(𝑥𝑠, 𝑥𝑟, 𝑡), from either real data or synthetic data,
can be transformed to simulate a plane wave source at some fixed position, 𝑥𝑠􏷩, bysimply performing a slant stack over the sources surrounding this central point. The
mathematical formula for this in 2D is given by Equation 2-142.

(2-142) 𝑈(𝑝𝑠, 𝑥𝑠􏷩 , 𝑥𝑟, 𝜏) = 􏾙𝑢(𝑥𝑠, 𝑥𝑟, 𝜏 − 𝑝 ⋅ (𝑥𝑠 − 𝑥𝑠􏷩)) 𝑑𝑥𝑠

This formula has a natural extension to 3D, so plane wave shots can be generated for
linear moveout in each coordinate direction.
Figure 2-29 describes graphically how a plane wave source is generated from a set of
shot profiles. Each source in the set is delayed (or advanced) in time by an amount
determined by the desired plane wave moveout and its distance from the central source.
The delayed shots are then summed to produced the desired plane wave response. This
process is repeated for each required plane wave.

70 Modeling, Migration and Velocity Analysis



Panorama Technologies A Word About Sources

Figure 2-29. Generating a plane wave source by delaying shots.

Plane wave sources produce a wavefield with a particular takeoff angle. Normally,
takeoff angles are measured in degrees from level with zero representing a plane
wave in the vertical direction. In the sense that only one plane wave can be generated
with this take off angle, the resulting track is unique and the full plane wave is
completely determined by this takeoff angle. Figure 2-30 conceptualizes the basic idea
in ray theoretic terms. Here we see a plane wave with an apparent takeoff angle of
approximately 30 degrees traveling through the subsurface media, as indicated by the
ray, and striking a steeply dipping reflection event. The angle of the plane wave at this
point also uniquely determines the raypath back to the source so either angle contains
sufficient information to completely determine the raypath.

Figure 2-30. A plane wave source and ray.
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Figure 2-31 illustrates a plane wave propagating through the Marmousi2 model.
Figure 2-32 is the actual response of the plane wave in Figure 2-31. While not something
the typical geophysicist is familiar with this plane wave shot response can be migrated
and imaged just like any traditional point source response.

Figure 2-31. Plane wave sources in the Marmousi2 isotropic elastic model.

(a). Plane Waves at 688 ms (b). Plane Waves at 1360 ms

Figure 2-32. Plane wave response over the Marmousi2 model.
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Huygen’s Principle and Integral Methods

One of the most powerful seismic modeling concepts, known today as simply the Huygens
Principle, was expressed some 350 years ago by both Christiaan Huygens and Augustin-
Jean Fresnel (Wikipedia contributors, “Huygens–Fresnel principle”, Wikipedia, The Free
Encyclopedia, Wikipedia link):

The Huygens–Fresnel principle (named for Dutch physicist Christiaan
Huygens, and French physicist Augustin-Jean Fresnel) is a method of analysis
applied to problems of wave propagation (both in the far field limit and in
near field diffraction). It recognizes that each point of an advancing wave
front is in fact the center of a fresh disturbance and the source of a new train
of waves; and that the advancing wave as a whole may be regarded as the
sum of all the secondary waves arising from points in the medium already
traversed. This view of wave propagation helps better understand a variety
of wave phenomena, such as diffraction.
For example, if two rooms are connected by an open doorway and a sound is
produced in a remote corner of one of them, a person in the other room will
hear the sound as if it originated at the doorway. As far as the second room
is concerned, the vibrating air in the doorway is the source of the sound. The
same is true of light passing the edge of an obstacle, but this is not as easily
observed because of the short wavelength of visible light.
Huygens principle follows formally from the fundamental postulate of
quantum electrodynamics that wavefunctions of every object propagate over
any and all allowed (unobstructed) paths from the source to the given point.
It is then the result of interference (addition) of all path integrals that defines
the amplitude and phase of the WAVEFUNCTION of the object at this given
point, and thus defines the probability of finding the object (say, a photon) at
this point. Not only light quanta (photons), but electrons, neutrons, protons,
atoms, molecules, and all other objects obey this simple principle.

While we frequently drop his name and simply call this Huygens principle, Fresnel’s
contribution cannot be minimized, but the part we really need to understand is
visualized in Figure 2-33. This principle is usually explained conceptually by saying that
the way Huygens arrived at it was based on observations of what happened when he
dropped a finite number of balls, 𝑁 , into the Zuider Zee. When the balls were arranged
in a line, what he saw was not 𝑁 independent events, but something like to a moving
line. He saw an envelope of the wavefields rather than the independent wavefield of
each separate ball. That being said, it is much more important to think in terms of the
formal discussion above. Perhaps a better example of the Huygens–Fresnel principle
would be to recognize that a discussion in an adjacent room would actually appear to
come from the connecting door. Clearly, the door is acting as a new source and the
listener only hears the sound coming from that source.
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Figure 2-33(a) shows this for two-way waves and emphasizes that fact we need not think
of a single reflector. Parts (b) and (c) of this figure show what happens when waves are
allowed to travel in only one direction.

Figure 2-33. A simple graphical interpretation of the Huygens–Fresnel Principle.

We see that the wavefield due to a reflector, the red flat line in parts (a), (b), and (c), can
be thought of as the envelope of an infinite series of point sources. Each point source can
be thought of as having been ignited by an impinging wavefront which in part (a) results
in both a reflection and a transmission. Parts (b) and (c) visualize what happens when
propagation is only allowed upward (b) or downward (c).

The Mathematics of Huygens’ Principle

One of the more mathematically complex ways to use this principle is to recognize that
regardless of the type of media (that is, acoustic, elastic, or anisotropic), we can think
of the total response of any give source in terms of what happens at any given point in
the actual model. For example, a source on the surface eventually arrives at some point
(𝑥, 𝑦, 𝑧) with reflectivity 𝑅(𝑥, 𝑦, 𝑧). According to Huygens’ principle, the energy of the
source then generates a virtual source at (𝑥, 𝑦, 𝑧), the energy from which then propagates
through the entire model, and then perhaps to receivers on the recording surface. In a
nutshell, what this really means is that we need only know the response of each point
in our model to completely reconstruct the entire wavefield 𝑢(𝑥, 𝑦, 𝑧, 𝑡). For the pressure
formulation, this concept is mathematically expressed in terms of the so-called Greens’
function 𝐺(𝑥⃗, 𝑥⃗𝑠, 𝑡) as shown in Equation 2-143, where 𝑥⃗ = (𝑥, 𝑦, 𝑧) is a generic point in the
medium and 𝑥⃗𝑠 is the vector location of the source.

(2-143) 𝜕􏷡𝐺
𝜕𝑡􏷡

− 𝜌𝑣􏷡∇ ⋅ 1𝜌∇𝐺 = 𝛿(𝑥⃗ − 𝑥⃗𝑠)

For a given source, 𝑠(􏹎𝑥􏷟, 𝑡), integration by parts allows us to express the solution 𝑝 of
Equation 2-17 in the integral form of Equation 2-144.

(2-144) 𝑝(𝑥⃗, 𝑡) = 􏾙
􏸵
𝐺(𝑥⃗, 𝑥⃗𝑠, 𝑡) 𝑠(􏹎𝑥􏷟, 𝑡) 𝑑𝑥𝑠 𝑑𝑡
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This means that the solution to the equation is just the sum of all the point responses of
the medium under consideration.
For example, when the velocity and density are constant, the Green’s function takes the
form in Equation 2-145 and Equation 2-146.

(2-145) 𝐺(𝑥⃗, 𝑥⃗𝑠, 𝑡) =
𝛿(𝑡 − |⃗𝑥−􏹎𝑥𝑠|

𝑣
)

4𝜋|⃗𝑥 − 𝑥⃗𝑠|

(2-146) 𝑝(𝑥⃗, 𝑡) = 􏾙
􏸵

𝑠(􏹎𝑥􏷟, 𝑡 −
|⃗𝑥−􏹎𝑥𝑠|
𝑣
)

4𝜋|⃗𝑥 − 𝑥⃗𝑠|

Thus, 𝑝(𝑥⃗, 𝑡) is the superposition of all the point responses in the medium due to a source
at the point􏹎𝑥􏷟 = (𝑥􏷟, 𝑦􏷟, 𝑧􏷟). Another way to say this is that the Green’s function, 𝐺, is theinverse of the operator in Equation 2-147.

(2-147) 𝐺 =
⎛
⎜
⎝

𝜕􏷡

𝜕𝑡􏷡
− 𝜌𝑣􏷡∇ ⋅ 1𝜌∇

⎞
⎟
⎠

−􏷠

Seismic Scattering

In integral form, these formulas lead to what has become known as domain-integral
methods for solving seismic scattering problems. Although they are important because
they divide the seismic propagation scheme into incident and scattered parts, these
methods have not been popular for seismic modeling so they are of only a little interest
to us.
In theory, the ideas can be based on any of the equations above, but for illustrative
purposes, we only consider the pressure case when the density is constant. The basic
idea is to assume that the velocity, 𝑣, can be expressed as the slowness difference 􏷠

𝑣
=

􏷠
𝑐
− 􏷠

𝑐􏷩
, where 𝑐􏷟 is constant. We can then write Equation 2-148, so that our solution takes

the form of Equation 2-149, where 𝑝𝑖𝑛𝑐 is defined by Equation 2-150.

(2-148) ⎛
⎜
⎝
∇ ⋅ ∇ − 1

𝑐􏷟
𝜕􏷡

𝜕𝑡􏷡
⎞
⎟
⎠
𝑝 = 𝑠(𝑥⃗𝑠, 𝑡) − 􏿶

1
𝑐􏷟
− 1𝑐 􏿹

𝜕􏷡𝑝
𝜕𝑡􏷡

(2-149) 𝑝(𝑥⃗, 𝑡) = 𝑝𝑖𝑛𝑐 +􏾙
􏸵
􏿶
1
𝑐􏷟
− 1𝑐 􏿹

𝜕􏷡𝑝
𝜕𝑡􏷡
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(2-150) 𝑝𝑖𝑛𝑐 = 􏾙
􏸵

𝑠(􏹎𝑥􏷟, 𝑡 − |⃗𝑥 − 𝑥⃗𝑠|/𝑣)
4𝜋|⃗𝑥 − 𝑥⃗𝑠|

Although a bit of a stretch, Figure 2-34 illustrates Huygens’ principle in considerable
detail. Here we see the wave reflections and transmissions at each point in a given
medium.

Figure 2-34. Wave directions and exploding reflectors.

Raytracing

For a source at 𝑥𝑠 and receiver at 𝑥𝑟, if we denote the traveltime or phase from 𝑥𝑠 to 𝑥𝑟 by
𝜑(𝑥𝑟, 𝑥𝑠) and the amplitude decay by 𝐴(𝑥𝑟, 𝑥𝑠), we can then write Equation 2-151 in space-
time and Equation 2-152 in frequency.
(2-151) 𝐺(𝑥𝑟, 𝑥𝑠, 𝑡) ≈ 𝐴(𝑥𝑟, 𝑥𝑠)𝛿(𝑡 − 𝜑(𝑥𝑟, 𝑥𝑠)

(2-152) 𝐺(𝑥𝑟, 𝑥𝑠, 𝜔) ≈ 𝐴(𝑥𝑟, 𝑥𝑠)𝑒𝑖𝜔𝜑(𝑥𝑟,𝑥𝑠)

Substituting into the wave equation in Equation 2-153, we get Equation 2-154.

(2-153) 􏿶∇ ⋅ ∇ −
𝑖𝜔􏷡

𝑣􏷡 􏿹𝐺(𝑥𝑟, 𝑥𝑠, 𝜔) = 0
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(2-154) 􏿼𝑖𝜔􏷡􏿰􏿴∇𝜑􏿷
􏷡
− 1
𝑣􏷡(𝐱)􏿳 + 𝑖𝜔

􏿴2∇𝐴 ⋅ ∇𝜑 + 𝐴Δ𝜑􏿷Δ𝐴􏿿 𝑒𝑖𝜔𝜑 = 0

Equating coefficients of powers of 𝑖𝜔 to zero yields the Eikonal equation, Equation 2-
155, and the transport equation, Equation 2-156.

(2-155) 􏿴∇𝜑􏿷
􏷡
− 1
𝑣􏷡(𝐱) = 0

(2-156) 2∇𝐴 ⋅ ∇𝜑 + 𝐴Δ𝜑 = 0

Simultaneous solution of Equation 2-155 and Equation 2-156 provides the traveltimes
and amplitudes necessary to approximate the Green’s function in an efficient manner.
While not straightforward, the Eikonal equation, as given here, can be solved by finite
differences and/or the method of characteristics. It is called the method of characteristics
because it solves the Eikonal equation along rays by simultaneously solving Equation 2-
157 and Equation 2-158. The method of characteristics is usually referred to more
traditionally as raytracing.

(2-157) 𝑑𝐱
𝑑𝜎 = 𝐩

(2-158) 𝑑𝐩
𝑑𝜎 = ∇􏿰

1
2𝑣(𝐱(𝝈))􏿳

In this case, 𝜎 typically represents arc length along the characteristic or ray, and 𝐱(𝜎) is
the position of the ray vector at the distance 𝜎 from the initial position of the ray. The
process is usually initialized by setting 𝐱(0) = 𝐱𝑠 to the initial source position and setting,
as shown in Equation 2-159.

(2-159) 𝐩(0) = 1
𝑣(𝐱𝑠)

⎛
⎜
⎜
⎝

sin 𝛼 cos 𝛽
sin 𝛼 sin 𝛽
cos 𝛼

⎞
⎟
⎟
⎠

Once 𝐱(𝜎) is known, the desired traveltime is computed by integrating along the
characteristic curve in Equation 2-160.

(2-160) 𝜑(𝐱(𝛼, 𝛽, 𝜎)) = 􏾙
𝜎

􏷟

𝑑𝜎′

𝑣􏷡(𝑥(𝛼, 𝛽, 𝜎′))
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Figure 2-35. Ray Fan versus Eikonal traveltime phase

(a). Ray Phase Function (b). Eikonal Phase Function

Figure 2-36. Anisotropic model and traveltimes.
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Raytrace Modeling

Figure 2-37(a) provides an example of how Huygens principle factors into construction
of a raytrace-based response to exploding reflectors. Given a point on a reflecting surface
(the red circle in the figure), a ray from a source point simulates an exploding the point.
Rays emanate from the point in all directions and are recorded at surface receivers. Since
any reflecting surface can be considered as a set of such points, the sum of all their point
responses will produce, in the worst case, a reasonable approximation of what we would
see if we ran our full two-way propagator for this model.

Figure 2-37. Huygens Principle as it applies to raytrace modeling

(a). Exploding a point reflector (b). Raytrace amplitude corrections

(c). Fixed offset raytrace modeling (d). Equal traveltime modeling

Figure 2-37(b) hints at one of the more complicated parts of accurate raytrace modeling.
Reasonably accurate raytrace amplitude responses require that we correct for several
important factors. These include source-to-reflection point decay and reflection-point-
to-receiver amplitude decay, as well as obliquity factors based on the incidence and
reflection angles. The phase of secondary arrivals also require correction.
Depending on how it is structured, raytrace modeling can be one of the most
computationally efficient modeling methods available, and can easily model virtually
any type of recording geometry. As indicated in Figure 2-37(c), raytrace modeling is
easily modified to achieve fixed or common offset modeling. Its chief drawback is that
multiples and other multiple arrival events are very difficult to include in the model.
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While we tend to think of raytrace modeling in the sense of the isochron in Figure 2-
37(a), this may not be optimum. Figure 2-37(d) shows raytrace modeling formulated in
terms of equal traveltime curves or surfaces. The yellow curve in this figure represents
all the reflection points for which the sum of the traveltime from a source to any point
on the yellow line and back to a receiver is identical to that from any other reflection
point. To produce the amplitude response at this time requires only that we sum all
reflection amplitudes at these locations into the trace at this fixed time. If you already
understand Kirchhoff migration to some degree, this concept should be very familiar.
Figure 2-38 provides proof of concept that the ray-based synthesis methods outlined here
actually work. In this figure, the model is on the left and the ray based synthetic shot is
on the right. The phase function, 𝜑, and amplitude decays, 𝐴, were calculated using the
method of characteristics along with a simultaneous solution to the transport equation.

Figure 2-38. A raytrace shot over the SEG AA′ 2D model.

While the raypath concept is sufficient to understand plane wave issues, in most
cases, we emphasize that the full plane wave generated by the source is much more
complicated. Because of this fact, it is possible to generate a full wave response from an
appropriately sampled bundle of ray theoretic plane waves. Figure 2-39 demonstrates
this in terms of what are more precisely called Gaussian beams. What we see in this
figure is part of the full response due to two plane wave raypaths. The blue lines indicate
what are called central rays, while the red lines indicate wavefronts calculated directly
from the central rays. The wavefronts are actually calculated using a finite difference
technique specified by theoretical formulas analogous to those on which our one and
two-way propagators are based. In addition to dynamically determining the amplitude
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at each point on the red lines, a Gaussian weight is applied to ensure that the sum of all
such waves faithfully represents the forward traveling wavefront. The name Gaussian
beam is derived from this weighting methodology.

Figure 2-39. A partial wave response due to two rays.

Figure 2-40 shows the kinds of events that each of our schemes can model successfully.

Figure 2-40. A brief comparison of modeling methods.
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Figure 2-41 summarizes the differences between three modeling algorithms. The left
hand side represents full two-way propagation, the middle image shows one-way
propagation, and the right side shows single arrival raytrace-based modeling. Note that
neither the full one-way nor the single arrival raytrace-based response have any reflected
waves.

Figure 2-41. Basic model differences. Left is full two-way, middle is one-way, and
right is single arrival Kirchhoff shot response for shot in center of
model.
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Zero Offset Modeling

At this point, our understanding of modeling is based on a two-step process. A source
of some kind is initiated at time, 𝑡 = 0, and it is then allowed to propagate into the
Earth according to some form of propagating equation. We also understand that each
subsurface point in the Earth, whether part of a reflector or not, can be considered as
a point reflector. After some length of time, energy from the source reaches the point,
and, according to Huygens Principle, initiates a new source at the location of the point
reflector. The point reflector then acts as a internal source which radiates energy in
all directions. Some of this energy reaches the surface as a reflection and some of it
continues into the Earth to ignite other point reflectors creating additional sources
until the energy is exhausted. What we record at the surface is the reflected energy at a
widespread array of receivers with some offset from the source position. What we lose
is the energy that never manages to get reflected. In such synthetic experiments, we can
record all the information we want. If desired, we can even record zero-offset data, but
to do that we have to set off sources at each location where we want a receiver. This
means that, at considerable computational expense, we must forward propagate a source
for every coincident receiver location.
In the early days of reflection seismic processing and interpretation, there was seldom
enough computer power to produce an appropriate number of shots to enable synthesis
of stacked sections. It was natural to attempt to find a way to produce all the traces in
zero or short offset ensembles. It does not take much effort to come up with a reasonable
approach. The Huygens principle tells us that if we can determine the response from any
single subsurface point, all we have to do to produce the receiver wavefield is to sum all
such responses into the receiver and we are done.
Let’s consider the zero-offset response of a single point-reflector. If the traveltime from
the source at 𝑠𝑖 to the point-reflector at 𝑟 is 𝑡𝑠𝑖𝑟, the traveltime from the reflector backto the source is also 𝑡𝑠𝑖𝑟 because the energy reaching the receiver at the source positionmust travel the path (or paths) from the source to the point-reflector in reverse. This
means that the total traveltime from the source to the reflecting point and back to the
receiver at the coincident source location is just 2𝑡𝑠𝑖. This statement must be true forevery coincident source and receiver on the recording surface, so the zero offset response
of the point reflector is the sum of the response for each source, 𝑠𝑖, on the recording
surface.
The trick to understanding how to efficiently synthesize zero-offset responses is simply
to realize that if the velocity, 𝑣, of the medium is divided by two and we set off an
explosion at the point reflector at 𝑡 = 0, then what we will record on the recording
surface is exactly the time 2𝑡𝑠𝑖. Thus, exploiting Huygens Principle in Figure 2-33,the zero offset response for any given model can be obtained by simply dividing the
velocity by two, setting off explosions at each subsurface point reflector, and recording
the response at the surface. The only problem with this trick is that the zero-offset
response obtained in this fashion will have odd period multiples whenever a free-surface
is present.
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Figure 2-42 shows what happens in the subsurface, and Figure 2-43 shows what we get
at the surface when we synthesize exploding-reflector-zero-offset data. The far upper left
image shows the subsurface exploding reflectors just before they explode. The remaining
figures demonstrate how the wavefield propagates to the receivers.

Figure 2-42. Exploding reflector synthesis.

Figure 2-43. Surface response of the exploding reflectors from Figure 2-42

84 Modeling, Migration and Velocity Analysis



Panorama Technologies Zero Offset Modeling

An easy way to understand the comments in the previous paragraph is through watching
the movie schematized in Figure 2-44. This move was made in the late 1980’s or early
1990’s from a model derived from a 3D two-way migration of 𝐷𝑀𝑂-corrected Gulf of
Mexico stacked data. It is based on what turned out to be an inaccurate interpretation
of the salt flank, but it is still an interesting case study.

Figure 2-44. Exploding reflector movie. The best way to understand exploding
reflector modeling is through a movie.
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Chapter3
Historical

This chapter examines the history and evolution of modern seismic migration methods.
Modern migration methods evolved from simple geometric concepts to complex
wave-equation techniques. The major driving force for such dynamic changes is the
overwhelming need to transition from doing calculations using pencils and paper to
analog calculators and finally to modern digital computers. This section reviews that
process and provides a firm foundation for the geometric concepts that led to the modern
era.
It should be noted that modern geophysical mathematical concepts governing wave
propagation in complex geologic media have been studied and developed before the
current epoch. Many of these theories date back to the early 20th, the 19th, and even,
in some cases, the late 18th centuries. While the scientific foundations were definitely
available, many early geophysical explorationists tended to ignore them and rely instead
on what might be called more ad hoc methodologies. What we use today is the result of
a lengthy trial and error stumble urged on by the need to find hydrocarbons hidden in
more and more difficult to find traps.
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Data Acquisition

During World War I (1914-1918), sound waves from exploding bombs and other
ordinance were detected many miles from the explosion point. Noise from the operation
of submarines was detected over even greater distances. These two observable events
are thought to have lead to the speculation that one could detect geologic bedding
planes by recording the sound energy from a surface explosion. Oil companies around
the world began to research whether or not such an idea might be possible. One of the
early investigators into this idea was a physicist named Reginald Fessenden. Figure 3-1
describes Fessenden’s scheme for locating geological formations using a sound source.
The source in this case was essentially a vibrator not unlike what we call a vibroseis
today. The technique is also virtually identical to what would ultimately became sonar
for locating submerged submarines.

Figure 3-1. A graphic describing the essence of R. Fessenden’s 1917 patent for
devices to generate and record seismic energy.

While I am quite sure that Fessenden was completely convinced that his device would
work, his belief was not shared by all. Thus, it was necessary to prove empirically that
a surface sound source would generate reflections from geologic formations, and that
such reflections could be recorded at the surface and mapped or interpreted to find
hydrocarbon bearing traps.
At this point in time, making a microphone, or what we now call a geophone, was very
expensive and each such device was very heavy. Thus, in the very early days, very few
receivers were used to record the response of each shot. Figure 3-2 shows a typical four
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microphone recording from 1928. It is believed to be one of the first seismic recordings
to empirically verify that reflections from subsurface formations occurred and could
be detected. The large oscillations at the beginning of this shot profile indicate the
first arrival of energy from the source. The arrival indicated by the arrow as well as
those above it are all reflections from the Cimarron anhydrite in central Kansas on the
Seminole Plateau. The fact that these amplitudes were actually reflections was verified
by drilling a well at the end of a line of four receiver shots.

Figure 3-2. A single trace recording
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Zero Offset Hand Migration

Given records like that in Figure 3-2, early explorers made a stickmap that might have
looked something like the one displayed in Figure 3-3. The times defining the event in
this figure would most likely have been based on the identified arrival from the closest
trace to the shot point. They would have liked to have a trace in which the shot and
receiver were coincident. But, because they were using dynamite, this would have
resulted in the destruction of the receiver, and so they settled for receivers that were
close to the shot. In Figure 3-2, the closest trace would have been the time pointed to by
the arrow with a shot-receiver separation (offset) of about 100 meters. This separation
would have to suffice as an approximation to a trace with coincident source and receiver.
Such traces were called zero-offset traces.

Figure 3-3. A simple non-flat horizon

The black line graph in Figure 3-3 represents what is called a zero-offset or unmigrated
time section. What is necessary for exploration and drilling is a depth map, or, when the
velocity is constant, a migrated time map as conceptualized by the red line graph. In
this case, the red line was simply drawn in free-hand, but represents the major features
of what might be the true migration position of a reflected horizon. Note in particular
that after migration, the peak of the anticline has not changed position, but its width has
shrunk. It is also true that the positions of dipping events have moved up-dip in every
case.
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To produce the red-line section in Figure 3-3, we need to know how to convert
unmigrated arrivals into migrated arrivals. Figure 3-4 shows the relationship between
zero-offset reflections and their correct migrated position. The true reflector has a true
dip angle of 𝛼, while the apparent or recorded event is at dip angle 𝛽. In this figure, the
data is assumed to have been recorded over a constant velocity medium. Note that the
location of the migrated event is placed relative to vertical time or depth, but remember
that this vertical positioning is only valid for constant velocity media. Since the velocity
is constant, vertical depth is given formally by the traditional relationship, where depth
is equal to velocity times one-way time, that is, 𝑑 = 𝑣𝑡/2 or 𝑡 = 2𝑑/𝑣.

Figure 3-4. Fundamental migration geometry between the apparent location and
dip 𝛽 versus the migrated location and dip 𝛼.
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Migration in a two-dimensional, constant velocity medium requires only that we know
the sound speed in the medium, and can measure the ratio of the change in arrival
time to the corresponding horizontal change. As indicated in Figure 3-5, this is usually
specified in seconds per trace divided by the trace spacing, but any time interval and
corresponding spatial interval will do. The formulas listed in the figure provide all
necessary calculations to determine the migrated position of any given event. Note
again that in this simple medium, vertical depth is easily obtained by multiplying the
vertical time, 𝑡, by the medium sound speed, 𝑣. Note also that events with any given
apparent dip migrate up-dip. Consequently, we can ignore the sign of any given value
and simply place the migrated dip element at its appropriate up-dip position. As we will
see, extension of this formula to a vertically varying medium is quite easy.

Figure 3-5. Fundamental migration trigonometry relating the apparent location
and dip specified by 𝑆 and 𝛽 versus the migrated location and dip
specified by 𝑆′ and 𝛼.
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Figure 3-6 extends the migration formulas in Figure 3-5 to a three-dimensional constant-
velocity medium. These equations provide the necessary computational formulas to
complete the migration process. Here, however, it is a bit more difficult to actually
do the migration by hand. At this point, the migrated position must be contoured to
produce a migrated map of the recorded event.

Figure 3-6. Fundamental migration trigonometry relating the apparent location
and dip specified by the 𝑆 and 𝛽 versus the migrated location and dip
specified by 𝑆′ and 𝛼.

Beginning in the late 1940’s and continuing until the early 1960’s, all interpreters used
this approach to produce migrated prospect maps. The equations were employed in a
two-step manner, where calculations proceeded in the line direction, and were then
followed by similar calculations in the cross-line direction.
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Figure 3-7 shows an example of an unmigrated or zero-offset map. This map is from an
early interpretation done over a salt dome in the Gulf of Mexico at South Pass Block 89.
Faults and the large truncation surrounding the large salt dome are clearly evident.

Figure 3-7. An unmigrated (zero-offset) time map of a salt structure in the Gulf of
Mexico. This particular map was contoured in 1972 or 1973 from a
two-dimensional grid.

The vectors graphed in Figure 3-8 are the result of using the equations in Figure 3-6.
A computer was used to generate and plot the vectors. Note the significant change in
the shape of the salt structure and note also that some of these vectors are over two
miles in length. It is important to observe that any 2D migration of the red line will
be inaccurate. Not only does its subsurface position migrate up-dip, but its shape can
change quite dramatically. This is a basic reason why 3D imaging is so superior to 2D.
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Figure 3-8. Migrated vectors from the map in Figure 3-7 computed using the
formulas in Figure 3-6.

Shot Profile Hand Migration in Two Dimensions

Picking traveltimes from a short-offset trace to approximate zero-offset arrivals and
thereby produce a zero-offset section works well when neither the velocity nor the
geometry of the local formations vary dramatically. It breaks down when velocity
variation is strong, when the structure of the subsurface horizons is complex and when
assuring that the current pick is on the same formation as the last pick is difficult.
The first approach to alleviating at least some of these problems was to increase the
number of geophones in each shot profile. Instead of using a handful of receivers on one
side of a shot, “split-spread” shooting, as shown in Figure 3-9, became prominent. After
each shot was recorded into multiple receivers, one half of the receivers were picked up
and moved to produce a new split-spread array for the next shot. For example, in the
diagram in this figure, the receivers on the left would be moved so that the left-most
receiver is just to the right of the right-most receiver. A new source would be discharged
and recorded into the newly positioned array. As this process continued, complete
coverage of the subsurface reflector is accomplished. As shown in the left hand trace
graphic in Figure 3-10, trace-to-trace correlation is now much easier, and subsurface
mapping is supposedly simplified.
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Figure 3-9. A typical 2D shot diagram from the mid 1960’s to around 1975. These
were used in split-spread shooting arrangements.

Figure 3-10. Detecting dip. The amplitude and direction were defined by a slant
stack.

A key question that needed an answer was what does dip really look like on a shot
record with a large number of receivers. Could shot-record dip be used to estimate the
location of the reflecting horizon?
These questions were not focused so much on dip, but on whether or not you could
estimate the dip from the shot profile and then figure out where the reflection came
from. Figure 3-10 shows Rieber’s 1936 solution to the question of estimating dip. He
delayed each shot linearly (right hand side of the figure) and summed up the amplitudes.
When a large amplitude was found, the delay required to find it defined the emergence
angle, and so gave insight into both the arrival direction and the amount of subsurface
dip that produced it. He was probably the first to recognize the importance of summing
over lines (slant stacks) to reduce the problem to one of simply detecting an amplitude.
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Unfortunately, I am not aware of anyone who took advantage of Rieber’s methods in any
detail during his day. It was not until the advent of modern computers that his method
came to the forefront in the form of plane-wave or beam stack approaches to imaging.
However, using information from a shot profile still became a viable approach to more
accurate subsurface mapping.
Figure 3-11 shows what an aspiring geophysicist named Klaus Helbig was given as a test
in 1952. It was his introduction to geophysics. He is a well known German geophysicist
who is still alive at this writing and is a wonderful source of historical information about
how geophysics was done prior to the advent of powerful computers. I am indebted to
him for many of the figures and exercises in this section. Figure 3-11 shows a synthetic
shot profile on the right. The problem, given an assumed velocity of 3000 meters per
second, is to find the reflection point that generated the shot record on the right. As
described in Figure 3-12, the problem is easily solved by applying Pythagorus’ theorem,
and Figure 3-13 provides the numerical answer to the problem. This calculation requires
close attention to the different signs, but essentially everything still moves up dip. Even
at the modest production rates of the fifties, it was unavoidable that errors crept into the
several hundred calculations that had to be performed by hand. As Helbig says:

Other companies must have had their way of dealing with this problem. In our
company, a two-dimensional slide rule was used. While it was not absolutely
fool proof, it simplified the calculations drastically and forced the operator to be
consistent. Consistent sign errors are more easily detected than random errors.

Figure 3-11. A test for an aspiring geophysicist.
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Figure 3-12. Klaus Helbig’s solution to the problem of Figure 3-11.

Figure 3-13. The numerical solution to the problem in Figure 3-11.
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It is worth noting that we can use virtually any two picks from the shot record displayed
in Figures 3-11, 3-12, and 3-13 to perform a migration. Such picks can be from any pair
of traces within the shot profile, so, technically speaking, we can migrate the shot record
in a very detailed manner. It is also worth mentioning that what is happening is shot-by-
shot migration. It was done by humans as opposed to a digital computer, but it is still a
shot-by-shot or shot profile migration.
Performing the computations involved in migration by hand is clearly difficult. Even in
two-dimensions, this process was fraught with error. As a result, there was a strong push
to automate the process to be able to choose well locations quickly and more accurately.
One of the first such devices, as shown schematically in Figure 3-14, might best be
described as a plotting device.

Figure 3-14. A simple machine for drawing reflectors at positions determined by
the solution to Klaus Helbig’s “thought problem.”

As drawn, it cannot directly calculate the value of x (Equation 3-1) in Figure 3-12,
but given a bit of experience by the interpreter, it can produce very accurate stickmap
interpretations of true subsurface horizon locations.

(3-1) 𝑥 = Δ𝑡
Δ𝑥

𝑡􏷟
2 𝑣

􏷡 − 𝑥􏷡􏷣 + 𝑥􏷠4
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Again, according to Klaus:
A temporary vertical line is drawn at horizontal distance 𝑥 down to the (expected)
position of the reflector element. A ruler graduated in distance traveled for given
times (times are displayed on the scale) is placed so that the zero-mark is at the
source S and the actual traveltime at the intersection with the temporary vertical
line. With the ruler firmly held in place, a small set square is placed against the ruler
to draw the forward part of the reflector elements. The set square is graduated at
half the scale of the rest of the drawing. This simplifies the drawing of the lengths
of the parts of the reflector elements (about half as long as the corresponding surface
spreads).

While it is not really a migration machine, it does foretell the kind of device that would
follow to reduce the computational complexities associated with the constant velocity
and straight ray formula of Figure 3-12.

Curved Rays

Until this point in time, rays underlying seismic imaging were implicitly assumed to
be straight. Allowing the velocities in our Earth model to vary requires that we allow
rays to refract or bend. The concept is illustrated in the cartoon of Figure 3-15. Because
light travels at different speeds in air and water, it refracts. Thus, the bowman must
shoot below the image of the fish he sees in the water to hit it. When velocities vary
significantly, failure to accurately account for reflections along bent rays can cause
significant misplacement of subsurface events. This is particularly true in subsalt
plays, but is generally true for almost all prospective areas. When this was recognized,
migrations began to enter what might be called the depth era. Doing this properly
increased the need for a more automated method for producing the stick map images.

Figure 3-15. Fishing with a bow and arrow
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If the bowman is to hit the fish, he must properly account for the way in which light
refracts as it passes from the water into the air. Similarly, the seismic program must
account for the way sound is refracted when it passes from one layer to another. Both
processes, in fact, obey Snell’s law, which states that the ratio of the sines of the angles
of incidence and refraction is equivalent to the ratio of velocities in the two media, and
is also equivalent to the inverse of the ratio of the indices of refraction. For example,
when a sound wave is reflected from 𝑅 in Figure 3-16 and travels toward the surface,
it is transmitted through each layer according to Snell’s law. This relationship is stated
mathematically in Equation 3-2.

Figure 3-16. Illustration of Snell’s Law

(3-2) sin 𝑖􏷠
sin 𝑖􏷡

= 𝑉􏷠
𝑉􏷡

= 𝑁􏷡

𝑁􏷠

As long as the velocity depends on depth only, curved rays can be incorporated into the
migration process by solving the problem layer-for-layer and then integrating. Since
depth is unknown beforehand, it is more consistent to sum over vertical time, that is,
over the time along a vertical ray. While specific cases can be solved exactly, the general
case of arbitrary dependence of velocity on depth requires the two approximations
shown Figure 3-17. As will be seen in later sections, the exact traveltime from surface to
reflector is given by an infinite series.
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Figure 3-17. Curved ray corrections

Thus, the upward traveling wave refracts based on its emergence angle, 𝑖, in the layer
just above it. When it finally reaches the surface with an emergence angle of 𝑖􏷟, it has
traversed the path indicated in Figure 3-17. The formulas integrating 𝑣(𝜏) over 𝜏, provide
the necessary estimate of 𝑥. The curved ray formula for 𝑥 is given by Equation 3-3,
where 𝑣̄, the well known root-mean-square (RMS) velocity, is given by Equation 3-4.

(3-3) 𝑥 = Δ𝑡
Δ𝑥

𝑡􏷟
2 𝑣̄

􏷡 − 𝑥􏷡􏷣 + 𝑥􏷠4

(3-4) 𝑣̄ =
􏽱
2
𝑡􏷟
􏾙

𝑡􏷩
􏷫
𝑣􏷡(𝜏) 𝑑𝜏

Equation 3-3 is important because it tells us how to do an approximate migration when
the velocity varies vertically and when rays are allowed to bend or refract. It also
provides the mathematical basis for a machine doing the complex migration calculations.
Figure 3-18 shows how the migration formulas in Figure 3-17 can be used, in principle,
to construct a machine for performing the migration for a given 􏸷𝑡

􏸷𝑥
and an average

squared velocity given by Equation 3-5.

(3-5) 𝑣̄􏷡 = 2
𝑡􏷟
􏾙

𝑡􏷩
􏷫
𝑣􏷡(𝜏) 𝑑𝜏
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Figure 3-18. Principle for a analog device for event migration.

For a given 𝑥􏷪+𝑥􏷫􏷭
􏷣
, the input values for Δ𝑡 and Δ𝑥 are input on the left and the migration

distance is read off the sliding cross arm on the right. The different parts of this relation
are assigned to corresponding sides of two similar triangles.
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Figure 3-19 should clarify these comments. Since most reflections were visible on all 24
traces, the Δ𝑥 setting and the 𝑣̄􏷡 setting remains generally constant, at least during the
calculation for a single shot record. Since lateral velocity variation was considered to be
small, 𝑣̄􏷡 also did not change appreciably. What did change was Δ𝑡. This change resulted
in a swing of the machine’s arm and consequently devices like that in Figure 3-19 became
know as Swing Arms. Figure 3-20, from A. W. Musgrave’s dissertation at the Colorado
School of Mines, shows a real migration machine of the type described figuratively in
Figure 3-19.

Figure 3-19. An early migration machine design.

Figure 3-20. A. W. Musgrave’s version of a swing arm migration machine
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Shot Profile Hand Migration in Three Dimensions

Dipping events are usually from three dimensional reflectors. Figure 3-21 shows one
possible approach to figuring out the 3D nature of reflections from dipping events by
recording into orthogonal receivers. The idea is to measure and use apparent dips in
crossline and inline directions as we did in Figure 3-6 to estimate the distance and
direction of the migrated position from the current one.

Figure 3-21. Using a “tee” to detect dip in three dimensions.

Figure 3-22 shows two late 1940’s vintage Amerada Petroleum seismic records showing
a “single-end shot record” and what they called a “tee” record for determining the
parameters for the calculations described in previous figures. The right-hand side of
each record is the single ender while the left-hand side represents the “tee”. This kind
of cross-spread shooting foreshadowed acquisition of seismic data using orthogonal shot
and receiver lines.
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Figure 3-22. A “tee” on the left and a single-ended spread on the right in both
panels. The “tee” was a string of receivers orthogonal to the
direction of the shot line.

106 Modeling, Migration and Velocity Analysis



Panorama Technologies Shot Profile Hand Migration in Three Dimensions

Figure 3-23 shows the simple mathematics of locating the source of the reflected event
when there is dip in the x and y directions. This is a 1940’s vintage description of how
Amerada Petroleum’s scientists approached the problem. This kind of solution was
considered a top-secret technology in all oil companies of the day.

Figure 3-23. Amerada Petroleum’s solution to using the “tee” to resolve 3D dip.
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Remarks about Migration

Much of what has been discussed so far is what we might call early shot-by-shot
migration. Early practitioners of the imaging art were forced to use what they had.
They did not have access to modern computers, so sorting data into any other order
was impossible because it had not been recorded, impossible because the technology of
the day was not capable of doing it, or impossible because it was just too difficult and
expensive to consider. There wasn’t any way to estimate velocities from recorded data,
so shot-by-shot event imaging was the only practical approach.
Without redundancy, velocity information was obtained only by trial and error. If,
when tested, a given 𝑣(𝑧) was shown to be in error, a new 𝑣(𝑧) was selected and used to
produce a new stick image. This process was repeated until the result was considered
geologically reasonable. This meant that a different flat Earth, vertically varying velocity
was being used for each new geologic setting, even if the new location was close to the
previous one. It also meant that a large number of different velocity functions might
have to be tried before a suitable one was found.
The basic steps in historical shot-by-shot imaging are summarized in the following list:

1. Estimate little dip elements from shot-profile records: Single-ended, split-spreads,
and “tees”.

2. Calculate the distance from the shot-point to the image point using relatively
simple math.

3. Place the image point at the estimated depth or vertical (migrated) time to produce
a “stick” image.

From a computational viewpoint, this suggests that more than one set of calculations
based on Figure 3-17 might be necessary to produce an accurate stick image of any given
horizon of interest.
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Redundant Data

When multi-fold acquisition consisted mostly of 2D data, receivers were laid out on
either side of a centrally placed source. Figure 3-24 shows that this split-spread shooting
resulted in redundant data that can be sorted in a variety of ensembles or gathers. In
this figure, we see common or fixed-offset, common-receiver, and common-mid-point
or common-depth-point gathers. Holding the offset fixed produces sections that, when
the offset distance is small, look remarkably like zero-offset profiles. Notice that the
term common-depth-point really has very little to do with a subsurface point. It is exactly
equivalent to a surface source-receiver midpoint. This is also true of common-offset
data, where the offset is measured at the surface. Moreover, these data are completely
described when the source and receiver locations for the given trace are known. All
other information can be computed from these locations.

Figure 3-24. Split-spread acquisition geometry.

These data, while usually referred to as 2D, actually have three dimensions: source
position, receiver position and time. Alternatively, they can be thought of as having
common-midpoint, offset, and time as their coordinate system. However we specify the
surface data, the resulting volume is three dimensional.
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Figure 3-25 shows the split-spread response of a subsurface containing a single reflection
point. At the top left, we see the entire response and then, clockwise, the next four
figures show a common-offset slice, a common-time slice, a common-angle slice, and a
common-midpoint slice. We will see that there are migration algorithms that allow us to
migrate data organized in any of these domains.

Figure 3-25. Split-spread point response. The response of a single point to
split-spread acquisition.

Redundant data have many advantages. In the early days, the major advantage arose
because they can be sorted into common-mid-point (CMP) order to produce rough
estimates of velocity. Although not completely accurate, these velocity estimates were
thought to provide the velocity 𝑣̄􏷡 so important in the migration approach discussed
above. The accuracy of velocities estimated in this way is a function of many things, but
the lateral velocity variation due to reflector dip and the velocity variation due angle of
propagation can render such estimates almost useless. Only when the Earth is absolutely
flat, and there is no variation of velocity with angle of propagation, can such velocity
analysis produce accurate values. Nevertheless, the velocities estimated in this way
represented a major step forward in improving the accuracy of migrations. Without these
estimates, the production of subsurface images probably would not have arrived as early
as it did.
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Figure 3-26 shows how redundant data provides estimates of velocity. The left side
of this figure shows a typical common-midpoint gather. The traces all have the same
midpoint, and, if the subsurface reflectors are all flat, the hyperbolic curve in red
defines the appropriate velocity to use to correct the data to zero offset time, 𝑡􏷟, and
ultimately to produce zero-offset data. Special analog computers were designed and used
to estimate 𝑣̄􏷡(𝑡􏷟) at as many midpoints as possible. Another analog computer stacked the
traces in the CMP and the resulting section was migrated using formulas just like those in
the previous paragraphs.

Figure 3-26. Flat Earth Society processing to zero offset

The right hand side of Figure 3-26 shows the application of a dynamic correction known
as normal moveout (NMO) to correct the hyperbolic response to a flat one. Part of
the definition of NMO from Wikipedia (Wikipedia contributors, “Normal Move Out”
Wikipedia, The Free Encyclopedia, Wikipedia link):

Because the wave must travel along the hypotenuse created between the depth of
the event and source-receiver offset, the time delay increases hyperbolically along
equally spaced geophones. The hyperbolic distortion must be corrected in order to
accurately image the subsurface.

The result of summing the dynamically corrected traces for every CMP is called a stacked
section.
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Swing Arms

This section presents additional information about swing arms, which were mechanical
devices enabling you to migrate dip data. See also Curved Rays on page 100 for more
information about swing arms.

Isopachs and Isochrons

In view of the comments in the preceding sections, one conclusion becomes quite
clear—any apparent reflection on any given trace could have come from any point on
an equal traveltime subsurface isopach. An equal traveltime isopach is that set of points
in the subsurface whose traveltimes from the surface and back (two-way times) are
identical. Figure 3-27(a) shows an equal traveltime curve in a constant velocity medium
for zero-offset reflections. Clearly, if all we have is a zero-offset trace, we can only infer
that the reflection could have come from any point on the equal-traveltime isopach
defined by the reflection time.
Figure 3-27(b) provides the simplest mathematics defining an equal traveltime curve. It
also shows how the apparent horizon (dotted line) is imaged as the envelope (dark solid
line) of a set of equal traveltime curves.

Figure 3-27. Equal traveltime curves in a constant velocity medium.

(a). Equal traveltime curves for zero offset data (b). Migration with equal traveltime curves

For any given arrival on a recorded seismic trace, all potential locations from which
this arrival could have been reflected lie on a circle with the source point as the center
and the velocity-time depth as the radius. If we trace out a circular isopach for each
source, the envelope of all such isopachs will be the location of the actual reflecting
surface. Since the velocity is assumed to be constant, these circular isopachs can also be
thought of as isochrons, or curves and surfaces in time rather than depth. Regardless of
terminology, a swing-arm built on this principle has a significant advantage over hand
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plotting each vector to migrate the given dip data. An entire zero-offset stick map could
be migrated with a constant velocity without every resorting to any calculations at all.
Of course, the constant velocity assumption meant that the results might not be accurate,
but they could be redone quickly. A different constant velocity could be used for each
surface position to at least make the resulting migrated stick map as close as possible to
subsurface truth.

Operators

Figure 3-28 provides the time response on the surface for a single point reflector in the
subsurface.

Figure 3-28. Operators and operator migration—Point reflector zero-offset
response

Every time on this time domain curve is the two-way time from the surface source to
the point reflector and back to a receiver at exactly the same location as the source. The
time recorded at 𝐴′ below 𝐶 is actually the time it would take for sound to travel from
a source at 𝐶 to the point reflector below 𝑆 and back to a receiver at 𝐶. As indicated in
Figure 3-28 for a constant velocity medium, the set of all such times can be calculated
quite easily using Pythagorus’ theorem.

(3-6) 𝑇 =
􏽱
𝑇􏷡􏷟 +

(𝐶 − 𝑆)􏷡

𝑣

In a more complex velocity medium, the curve would not be a circle, but would still
represent the zero-offset reflection times from the point reflector. Zero offset responses
are quite easy to calculate, and raytrace modeling is fully capable of calculating such
responses in virtually any medium.
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The operator approach to migration computes an operator curve, intersects it with each
input trace, selects the amplitude at the intersection time, and then adds it to the image
point or output location on or near the top of a downward facing frown. In actuality, this
is completely equivalent to the previous diffraction-based approach. They both produce
the same result, but this one is a bit more difficult to understand. Figure 3-29 shows an
amplitude at 𝐴 being moved to the top of the zero-offset response curve and added to the
reflection point location at 𝐵. In general, all the amplitudes that intersect the operator
would be summed into the top of this curve at point 𝐵. However, the only non-zero
amplitude point that we can see is at 𝐴. As the process continues, each and every point
on the apparent or unmigrated reflector is moved to the top of the associated zero-offset
response curve and added to the appropriate spot on the migrated image represented by
the solid line in Figure 3-29.

Figure 3-29. Operators and operator migration—Zero-offset response or operator
migration

The three-dimensional figure on the right illustrates all the amplitudes from surrounding
traces that contribute to the trace in the middle. These frowns are called operators, but
they are really the modeled response of a point reflector at some subsurface location.
The important thing is the process and not the shape of the zero-offset response.
This approach to migration is somewhat more difficult to understand than the spray
approach of the previous section. Why it works should become much clearer in the
chapter on seismic modeling. However, one thing should be clear, it is based on
modeling a point reflector and not on the possible locations from where the reflector
might have come.
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Non-Zero Offsets

Figure 3-30 shows the ellipse representing the set of points whose traveltimes from a
source at 𝑆 to a receiver at 𝑅 are identical. Producing this kind of curve in variable
velocity mediums became practical with the advent of digital computers. Migration of
fixed-offset data follows the same principles at shown in the zero offset case shown in
the bottom image in Figure 3-27. There is, of course, a corresponding non-zero-offset
operator-based approach to migration. Raytracing is used to compute the traveltime
from any given source to a reflection point, then from the reflection point back to the
receiver on the surface. Operator migration then proceeds in the same manner as it did
in Figure 3-28.

Figure 3-30. Fixed offset equal-travel-time curves.

It is clear from Figures 3-27 through 3-30 that if we wish to use the concepts involved
in the most general possible case, we must compute traveltimes from any given source
to a potential reflection point and then back to a fixed receiver. Just prior to the advent
of digital computers and to some extent beyond that time, efforts were made to do just
that. Analog devices were designed to compute these traveltimes in the form of wavefront
charts.
The mathematics in Figure 3-31 was used to compute the wavefront charts in Figure 3-
32. It is not important to understand the mathematics. What is important is that the
formulas provide a method for calculating the two-way traveltimes from any point on the
surface to any point in the subsurface of a 𝑣(𝑧) medium and back. Today, the traveltimes
originally chosen from wavefront charts are easily and very repetitively computed via
raytracing. What is also important is that this approach was known and used in the mid
1950’s for performing complex migrated stick figure reconstruction of picked seismic
arrivals.
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Figure 3-31. Wavefront chart mathematics

The wave front charts in Figure 3-32 are based on the mathematics of Figure 3-31. The
charts represent the velocity functions in Equation 3-7, where 𝑛 = 0 is constant velocity,
𝑛 = 1 is standard chart (constant velocity gradient, rays are circles, fronts are spheres),
and 𝑛 = 2, which is more realistic, but in the pre-computer days, difficult to generate.

(3-7) 􏿶
𝑣
𝑣􏷟
􏿹
𝑛

= 𝑧 + 𝑧􏷟
𝑧􏷟

Figure 3-32. Wavefront charts
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It may not be clear from these figures, but the construction of any given wavefront chart
is based on the utilization of circles to generate rays. This should not be too surprising
since, for any given constant velocity, the point response is defined by the equation of a
circle.
Once the concept, as shown in Figure 3-33, is understood, it is quite reasonable to
construct a mechanical device to both calculate the wavefronts and also produce stick
figure images. By the late 1950’s and into the early 1960’s, machines were constructed
to perform migration based on the wavefront charts in Figure 3-32. Thus, Figure 3-33
is a geometrical picture of the mechanical basis for a machine such as A. W. Musgrave’s
wavefront charting machine shown in Figure 3-34. Note the charts on the surface.
This machine is actually an analog device for raytracing. I don’t know about you, but
this looks like a printing press to me. Unfortunately, no such machine appears to have
survived.

Figure 3-33. The geometric basis for A. W. Musgrave’s migration machine
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Figure 3-34. A. W. Musgrave’s migration machine

It is important to note that in the real world, because the sources and receivers are at
discrete locations, we must consider our measured seismic data to be digital in character.
Since modern data is also digital in time, reflection seismic processing today is purely
digital. Since the wavenumbers of propagating plane waves carry information about
the angle of propagation, this suggests that there will be some issues with regard to the
aliasing of dipping subsurface reflectors. The impact of aliasing on our ability to image
subsurface events will be discussed in subsequent sections.
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Stacking and DMO

The primary purpose of this section is to provide a simple understanding of why certain
parts of early digital processing techniques did not image all of the Earth’s structures.
This, in effect, is an interpretation issue. We will see that what might be considered
easily imaged events are sometimes totally invisible in the seismic record. In many such
cases, parts of the subsurface structure may be invisible simply because we have not
applied the most accurate available technique to image it. In other cases, its absence
may be due to improper noise suppression techniques applied during the preprocessing
steps. Whatever the cause, the idea is always to be able to understand what approach
produces the best image.

What is Stacking and DMO?

As we will see, migration can be split into four conceptual pieces. As a rule of thumb,
these four pieces will help us understand what migration is and how it naturally
completes the imaging process.

1. The first piece is called normal moveout (NMO). When the world is flat, NMO
corrects for the fact that the source and receiver are not coincident, but it cannot
do so when the reflections come from dipping horizons.

2. The second piece of migration corrects for dip. Historically, this second piece was
called dip-moveout (DMO), but, in the cases of interest here, it happens within the
migration methodology itself.

3. The third migration piece shifts events on each moveout-corrected offset to its true
subsurface position.

4. The fourth and final piece sums (stacks) all the redundant traces into the final
image.

When the Earth’s velocity has very little lateral variation, these four operations can be
split apart and applied in any desired order. The most familiar order is NMO, DMO,
stack, and finally migration. However, when the velocity is almost constant, it is quite
possible to use the order DMO, migration, NMO, and stack. Full prestack migration can
be thought to have the order DMO, NMO, imaging, and stack, but in reality the sequence
DMO, NMO, and imaging is usually done in one giant process.
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Initial attempts at subsurface imaging forced the geophysicist to join the Flat Earth
Society. For a constant velocity medium, Figure 3-35 shows that Greek mathematics
can be used to provide the total travel time, 𝑡, from a surface source to a flat subsurface
reflector and back to a surface receiver. This is done in terms of the two-way vertical
travel time, 𝑡􏷟, from the midpoint, M, to the reflector and back to the surface. Since
neither the velocity, 𝑣, nor the vertical or “zero-offset” traveltime is usually available
directly, redundant source and receiver configurations must be used to estimate the
traveltimes. For most acquisition geometries, redundancy is usually sufficient to
simultaneously estimate both 𝑡􏷟 and 𝑣.

Figure 3-35. Constant velocity NMO.

The subsurface image point, 𝐼 , is usually referred to as the common-depth-point (CDP).
The common depth point is the halfway point in the travel of a wave from a source to
a flat-lying reflector to a receiver. When we know the velocity, the arrival at time 𝑡 and
offset ℎ can be moved to time 𝑡􏷟. This process is usually called normal moveout correction
(NMO). After NMO, all traces with a common-midpoint are summed to remove the
redundancy and produce a zero-offset trace.
However, for our purposes, the important thing is that this vertical time shift is the first
step in formulating a prestack approach to imaging. The shift corrects to the arrival time
consistent with coincident sources and receivers. After NMO, the result is as though the
source, 𝑆, and receiver, 𝑅, were located at the midpoint, 𝑀.
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The traces in the CDP gather of Figure 3-36 all have the same midpoint. When the
subsurface reflectors are all flat, the hyperbolic curve in red defines the appropriate
velocity to use to correct the data to zero offset time 𝑡􏷟. A modern computer easily
fits the data and provides the graphics to estimate both the vertical traveltime and the
velocity. The vertical traveltime, 𝑡􏷟, in this figure is extremely important. Keep this in
mind as the book continues.

Figure 3-36. Typical midpoint gather.

The shots in Figure 3-37 are from the pyramid model in Figure 3-38.

Figure 3-37. Shots 1-24 from the Pyramid model
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Figure 3-38. The Pyramid Model

Figure 3-39 is a stack of the common-midpoint ordered data in Figure 3-37. NMO was
performed using the root-mean-square velocity from the model used to generate the
data. The “noise” in this data set is representative of a poor implementation of the
approximations to the differential equation used to model the data. This kind of noise
is related either to the fact that the differences have not been approximated well, or
because damping at the boundaries is poor.

Figure 3-39. The stack of Shots 1-24 from Figure 3-37.
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Figure 3-40 shows how dip affects arrival times as a function of half-offset.

Figure 3-40. Moveout for a dipping reflector.

To relate the traveltime from source at 𝑚 − ℎ (𝑆) to the image point, 𝐼, and back to the
receiver at 𝑚+ ℎ (𝑅), note that in Figure 3-40, the length of the path from 𝑆 to 𝐼 and then
to 𝑅 is the same as the length from 𝑅 to 𝐼 ′. Using the law of cosines, we have Equation 3-
8.

(𝑅𝐼 ′)􏷡 = (𝐴𝐼 ′)􏷡 + (𝐴𝑅)􏷡 − 2(𝐴𝐼 ′)(𝐴𝑅) cos 2𝛽(3-8)
= (𝑚 − ℎ − 𝐴)􏷡 + (𝑚 + ℎ − 𝐴)􏷡 − 2(𝑚 − ℎ − 𝐴)(𝑚 + ℎ − 𝐴) cos 2𝛽
= 2(𝑚 − 𝐴)􏷡 + 2ℎ􏷡 − 2(𝑚 − 𝐴)􏷡 cos 2𝛽 + 2ℎ􏷡 cos 2𝛽
= 2(𝑚 − 𝐴)􏷡(1 − 𝑐𝑜𝑠2𝛽) + 2ℎ􏷡(1 + cos 2𝛽)
= 4(𝑚 − 𝐴)􏷡 sin􏷡 𝛽 + 4ℎ􏷡 cos􏷡 𝛽

To get the time over the path from 𝑅 to 𝐼 ′, divide each side of Equation 3-8 by 𝑣􏷡, as
shown in Equation 3-9.

(3-9) (𝑅𝐼 ′)􏷡

𝑣􏷡 = 4(𝑚 − 𝐴)􏷡 sin􏷡 𝛽
𝑣􏷡 + 4ℎ

􏷡 cos􏷡 𝛽
𝑣􏷡

Since the vertical traveltime is given by Equation 3-10, we get the final equation,
Equation 3-11.

(3-10) 𝜏􏷟 =
𝑀𝐶
𝑣 = (𝑚 − 𝐴) sin 𝛽

𝑣

(3-11) 𝜏􏷡 = 𝜏􏷡􏷟 +
ℎ􏷡 cos􏷡 𝛽
𝑣􏷡 = 𝜏􏷡􏷟 +

ℎ􏷡
𝑣􏷫

􏸂􏸎􏸒􏷫 𝛽
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The cosine term in the denominator of Equation 3-11 essentially increases the apparent
velocity of the dipping reflector. For example, the apparent velocity of a bed dipping at
60 degrees will be exactly twice that of a flat reflector in the same velocity medium.
Figure 3-41 shows that reflections from a dipping reflector in a constant velocity medium
appear to be from a flat reflector with a velocity of 𝑣

􏸂􏸎􏸒 𝛽
. The blue hyperbola is what

actually defines the dipping event. The red curve is the hyperbola from a flat reflector
with the same velocity, 𝑣.

Figure 3-41. The impact of dip as seen on a common-midpoint gather.

Note that for traces with a fixed midpoint, reflections from the dipping horizon do not
correspond to a fixed common-depth-point (CDP) location (the intersection of the green
line and the dipping reflector). In fact, the larger the offset between source and receiver,
the greater the CDP-reflection point separation. This separation is referred to as CDP
smear. To correct precisely for CDP smear requires that we prestack migrate the traces,
since normal moveout will not work.
Nevertheless, the hyperbolic curve (blue in the figure) can still be corrected and stacked,
it just cannot be stacked with the true velocity 𝑣, but must be stacked with the normally
much faster velocity, 𝑣

􏸂􏸎􏸒 𝛽
. Thus, if we assume that the CDP smear is small, we could, in

principle, stack the data with the faster velocity and produce some kind of representation
of the dipping event. One way to do this, and then combine the dipping information
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with the standard stack, is to NMO with the faster velocity, filter out anything that is not
flat, stack and then add the result back to the NMO stack.

Examples

To see how this might work, we will stack the data with velocities of the form 𝑣
􏸂􏸎􏸒 𝛽𝑖
over

a uniform range of angles 𝛽𝑖, filter out anything that is not flat on the CDP gathers, andthen stack.
Figure 3-42 is an example stack of a two-dimensional Gulf of Mexico data set over an
obvious salt structure. The process used to generate this unmigrated image was simply
NMO followed by stack. There was no intermediate dip correction or migration.

Figure 3-42. A typical stack of a 2D data set from the Gulf of Mexico. This data
was shot sometime in the 1980’s.
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Figure 3-43 is a stack of a Gulf of Mexico salt structure using parameters and filters that
attempt to image dip up from 0 to 15 degrees. What we actually did was find a set of
velocities that we thought represented the sediment velocities, and then filter out all of
the events that were over-corrected by normal moveout. Our best estimate is that the
actual dips of the reflections comprising this image are no larger than 35 degrees.

Figure 3-43. Stack of the data in Figure 3-42 using an assumed dip of 7.5 degrees.
At the bandwidth of these data the effect is to stack everything up to
approximate 15 degrees.
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Figure 3-44 is a stack of a the Gulf of Mexico salt structure with parameters chosen to
image events from beds with 15 to 30 degree dips. Note that what we are seeing are
mostly reflections from beds whose dip is increasing as they approach the salt dome.

Figure 3-44. Stack of the data using an assumed dip of 22.5 degrees. At the
bandwidth of these data the effect is to stack everything between 15
and 30 degrees of dip.
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Figure 3-45 shows the stack of data over a Gulf of Mexico salt dome with parameters
chosen to image reflections from events with 30 to 45 degree dips. As we increase the
angle of the dips we are trying to image, we see that events reflected from more steeply
dipping beds begin to appear. Again, this unmigrated image was produced by modifying
the normal stacking velocity field to produce an apparent velocity field closely associated
with dipping events in the 30 to 35 degree range.

Figure 3-45. Stack of the data using an assumed dip of 37.5 degrees. At the
bandwidth of these data the effect is to stack everything between 30
and 45 degrees of dip.
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By increasing the dip range to 45 to 60 degrees, Figure 3-46 shows that, in fact, there
are reflections in this data set from beds that dip in excess of 45 degrees. What is more
important is that these reflections cannot be seen in a typical stack which has not been
dip-moveout corrected. Thus, if they are not imaged in a traditional stack, we cannot be
expected to image them on post-stack migrated sections.

Figure 3-46. Stack of the data using an assumed dip of 52.5 degrees. At the
bandwidth of these data the effect is to stack everything between 45
and 60 degrees of dip.
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Figure 3-47 is a linear stack of the 15 to 60 degree dipping events. By stacking the
sections from the last three figures, we get an idea of the events that should be in the
original NMO-only based stack, but are not visible there. When these are migrated, a
much clearer picture of the salt structure appears.

Figure 3-47. The sum of the sections in Figures 3-43 through 3-46.
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Adding all of the sections together provides the final NMO-DMO corrected stack in
Figure 3-48. This DMO corrected data set is much closer to a true zero-offset profile,
and now includes reflections from steeply dipping events. Migration of this section will
produce a much clearer picture of the salt structure.

Figure 3-48. The sum of the sections in Figures 3-42, and 3-47.

Remarks about DMO

In summary, correcting for dip using DMO partially migrates the data to address the
fact that CDP arrival time curves have apparent velocities much faster than flat events.
It converts upward sweeping hyperbolas in each and every NMO-corrected CDP into
flat events at zero-offset traveltimes. Although it is possible to perform DMO using non-
constant velocity fields, in practice, most DMO algorithms are constant velocity methods.
They achieve their goals in much the same manner as an ordinary migration, but with
much smaller operators. As seen in the earlier figures, it is possible to image dipping
events using existing stacking and dip filter methods. What is even more surprising
is that constant velocity DMO and even prestack time migration can be accomplished
without knowing anything about the velocity.
The NMO-DMO-STACK combination is usually called partial prestack migration because
it performs three of the four tasks involved in performing a prestack migration. After its
application, the only remaining task is to position subsurface events properly. Because
NMO-DMO-STACK is relatively cheap, this process played an important early role in
improved imaging, and for a time became a standard part of every processing sequence.
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However, since most DMO processes are based on constant velocity assumptions, or,
at best, 𝑣(𝑧) assumptions, they have considerable difficulty producing images below
strong velocity variations. Thus, DMO-NMO is a useful tool for imaging steep dips, but
is impractical when the objective is subsalt.
With the advent of inexpensive computers and the resulting ability to perform full
prestack migration, DMO-NMO no longer reigns as the optimum approach to seismic
imaging.

Historical Summary

Absolutely all migration algorithms can be considered to do one or the other of the
processes described in this section. Which method we choose to use to explain observed
events on imaged sections is pretty much a matter of choice. Diffracting amplitudes
over specific curves or smiles is by far the most popular. Nevertheless, it is sometimes
helpful to understand the alternative frown-based method. Before this frown-based
approach can be fully appreciated, it is necessary to consider the geometrical aspects of
data synthesis or seismic modeling. Chapter 3 reviews seismic modeling. Since seismic
modeling must of course acquire data in some sense equivalent to normal acquisition
procedures, Chapter 4 reviews how seismic data is acquired today.
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Chapter4
Zero Offset Migration
Algorithms

The sections on imaging are clearly the heart of the book—this chapter contains a
discussion of zero-offset poststack migration, including time migrations, and Chapter 6
discusses prestack migration. The wide selection of algorithms are from what we
call the migration hierarchy, but not all of those algorithms are covered completely.
Considerable importance is placed on the impact of aliasing and on how full wave-
equation-based methods function in exactly the same manner as much simpler
approaches, although they are more difficult to understand.

The Migration Algorithm Hierarchy

We again appeal to history to organize the material as we discuss various algorithms in
terms of the Migration Hierarchy shown in Figure 4-1. This figure is a very simplified
diagram of the variety of migration approaches available to image reflection seismic
data. In a manner analogous to what was discussed in the modeling section (Chapter 3),
this hierarchy refers to the theoretical assumptions made in algebraic manipulations of
the initial propagator equations. It is important to note that, although we will address
this hierarchy in a top down manner, this is definitely not the order in which the
algorithms were developed. It is also interesting to observe that computational efficiency
generally improves as we go down the figure; that is, full two-way extrapolation at the
top is much more computationally intensive than almost any of the one-way methods at
the bottom.
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Figure 4-1. A modern hierarchy of migration algorithms.

Each symbol or phrase in the figure references a particular approach to migration. In
general, capital 𝐹 indicates a frequency domain method, K is a wavenumber method, X
is a method in space, and T is a method in time. Thus, FX migration means an algorithm
that works essentially in the frequency-space domain, while XT is a space-time method.
FKX methods are the dual-domain methods that achieve their goals by bouncing back
and forth between frequency, wavenumber, and space. We could conceivably have
a FKXT or multi-domain method, but, to date, such methods have not gained much
popularity.
All of the methods in the hierarchy, including all of the Kirchhoff approaches, were
derived from a three-dimensional version of the one-dimensional forward modeling
propagator. Fundamentally, the geometry dictated by the wave equation from which
they arose is the same for each and every approach. Wave equation propagators are all
derived from continuous versions of discrete equations like Equation 4-1, where 𝑣 is the
speed of sound in the medium.

(4-1) 𝑢(𝑥 + ℎ, 𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥 − ℎ, 𝑡)
Δ𝑥􏷡 = 1

𝑣􏷡 􏿶
𝑢(𝑥, 𝑡 + Δ𝑡) − 2𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡 − Δ𝑡)

Δ𝑡􏷡 􏿹

Equation 4-1 is written in continuous form as Equation 4-2.

(4-2) 𝜕􏷡𝑢
𝜕𝑥􏷡 =

1
𝑣􏷡
𝜕􏷡𝑢
𝜕𝑡􏷡

By extension, the basic three-dimensional partial differential equation then takes the
form of Equation 4-3.

(4-3) 𝜕􏷡𝑢
𝜕𝑥􏷡 +

𝜕􏷡𝑢
𝜕𝑦􏷡 +

𝜕􏷡𝑢
𝜕𝑧􏷡 =

1
𝑣􏷡
𝜕􏷡𝑢
𝜕𝑡􏷡
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This wave equation is the simplest form from which all migration algorithms arise, but
that does not mean it is the correct one. It just means that it was easier to start with this
one rather than the general heterogeneous version shown in Equation 4-4, where 𝜌 is
density, 𝑣 is sound speed, and ∇ is the vector differential operator given by Equation 2-
19. Regardless of the complexity of the original equation, the fundamental migration
concepts do not change.

(4-4) 𝜕􏷡𝑈
𝜕𝑡􏷡

− 𝜌(𝑥, 𝑦, 𝑧) 𝑣􏷡(𝑥, 𝑦, 𝑧) ∇ ⋅ 1
𝜌(𝑥, 𝑦, 𝑧)∇𝑈 = 𝑠(𝑥𝑠, 𝑡)

Migration in Depth

This section describes a number of the methods used to perform migrations in depth. In
depth migration, reflections in seismic data are moved to their correct locations in space.
These methods include both explicit and implicit one- and two-way methods, two-way
reverse time methods, Kirchhoff style methods, and plane wave techniques.

Explicit Two-Way XT-Reverse-Time Migration

Perhaps the easiest way to understand migration is to consider what we learned in the
section on Zero Offset Modeling. To produce true zero-offset data, we started with a
given model, halved the velocity, computed reflection amplitudes for each point on a
reflector, and then simulated explosions at each such point reflector. These simulated
explosions were ignited at 𝑡 = 0. The surface wavefield at 𝑧 = 0 for all possible recording
times, 𝑡, became a zero-offset subsection. The trick of halving the velocity was all that
was necessary to ensure proper arrival times in our zero-offset experiment. It does not
take a lot of thought to see that if we simply reverse this process, we will arrive at an
algorithm that will produce an image of the subsurface at the original 𝑡 = 0.
“Reverse time migration” uses the reversed time data as a source term for a seismic
modeling exercise. Thus, the “source” in this case is a multiplicity of traces. In 3D, it
is a common-offset volume where the distance between the source and receiver is zero.
Figure 4-2 is a schematic example of the process. The first and second lines of Figure 4-
2 show what remains as each time slice is propagated into the output image, while the
second and fourth lines show the current image at each propagation step. Thus, the
upper first and second images in the upper left show the initial condition of the zero-
offset wavefield and the subsurface. In practice, the initial subsurface subsection would
be filed with zeros. Here, we just reversed the modeling images from the subsection on
modeling. Note that as the process continues, the final subsurface at the bottom right
contains the fully migrated image—all amplitudes in the original recorded zero-offset
subsection have been exhausted and are now zero; that is, the entire recorded wavefield
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has been back propagated into the Earth. In these images, all subsurface reflectors are
clearly being imaged from above and from below.

Figure 4-2. Reverse time migration snapshots.

Figure 4-3 visualizes what happens locally during the process described by Figure 4-2
and its associated comments. Input traces are reversed in time and fed directly into the
modeling algorithm to produce the final image. This kind of method is called an explicit
method because it back propagates time-reversed data one step at a time.

Figure 4-3. Using time-reversed traces with a modeling propagator to produce
subsurface images
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Implicit Two-Way XT Reverse-Time Migration

The only difference between explicit and implicit zero offset migration is that the former
explicitly employs the mesh shown in Figure 4-3, while the latter inverts a rather large
matrix to obtain the migrated image. The “sources” in both are the time-reversed stacked
or zero-offset traces, so the only differences between the explicit and implicit versions
involve the implementation.

Explicit One-Way XT Reverse-Time Migration

Again, going back to our modeling discussion, it is quite easy to make a one-way
migration method. Figure 4-4 illustrates this point quite accurately. Note that three-
dimensional, one-way-reverse-time migration differs from its two-way counterpart only
in that the propagating stencil is free of coefficients below the current time or depth
slice. Thus, unlike the two-way algorithm, one-way imaging proceeds one time or depth
slice at a time. It is precisely this feature that makes one-way wave equation imaging
vastly more efficient than its full two-way cousin.

Figure 4-4. Three-dimensional non-Kirchhoff time or depth migration.

Implicit One-Way XT Reverse-Time Migration

Here we only need to invert the appropriate upper-diagonal matrix to find the imaged
solution. Because the process is based on a back-substitution method, it is extremely
efficient and therefore much faster than the full two-way-implicit scheme.
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One-Way FK Reverse-Time Migration

One-Way-FK-Reverse-Time Migration methods can be divided into FK, phase shift
methods, and phase shift plus interpolation methods.

FK or Stolt Migration

In the mid 1970’s, R. H. Stolt at Conoco’s Ponca City, Oklahoma research facility
invented what has become known as Stolt or FK migration, as shown in Figure 4-5.

Figure 4-5. R. H. Stolt’s frequency-wavenumber Migration.

What Stolt recognized was that in a normal zero-offset seismic experiment, we are
given time data, 𝑢(𝑥, 𝑦, 0, 𝑡), measured at 𝑧 = 0, and what we want is the exploding
reflector depth data, 𝑢(𝑥, 𝑦, 𝑧, 0). He also understood that if he could compute the depth
wavenumber, 𝑘𝑧, from frequency, 𝜔 = 2𝜋𝑓, and the 𝑥 and 𝑦 wavenumbers, he could
produce a very fast 𝐹𝐾 domain method.
Figure 4-5 shows how he did migration. The vertical wavenumber 𝑘𝑧 in depth is directly
computable from the 2D dispersion relation 𝑘􏷡 = 𝑘􏷡𝑥 + 𝑘􏷡𝑧 where 𝑘 = 𝜔

𝑣
. Because

the dispersion relation in Equation 4-5 holds in 3D, extension to three dimensions is
straightforward.

(4-5) 𝑘􏷡 = 𝑘􏷡𝑥 + 𝑘
􏷡
𝑦 + 𝑘

􏷡
𝑧

The assumption of constant velocity is the Achilles’ heel of Stolt’s method. It cannot be
derived mathematically unless the velocity is constant, and no method has ever been
found to overcome this weakness. However, since it was Fourier-based, it was much
faster than any of the other methods of the day. Researchers quickly tried to get around
the constant velocity issue.
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Phase Shift Migration

The FK domain phase shift method shown in Figure 4-6 was based purely on reverse-
time modeling. It was one of the first approaches to successfully remove the constant
velocity criteria imposed by the Stolt approach. It was also the first and, perhaps until
very recently, the only method that was capable of imaging up to 90 degrees. The phase
shift approach was invented by Jeno Gazdag shortly after the Stolt method appeared. It,
in effect, applies the Stolt method to each slice in a Earth model where the propagation
velocity varies only vertically. Thus, it is a recursive technique that repetitively applies
the formula for 𝑘𝑧 in Figure 4-5 to each constant velocity depth slice in the 𝑣(𝑧) model.
It begins at zero depth (𝑧 = 0) and proceeds until the desired depth is reached. As long
as the Earth’s velocity varies only vertically, it does a remarkably good job of imaging
steeply dipping events. This approach can be modified to include at least some two-way
propagation, so it is also very versatile.

Figure 4-6. FK domain depth-slice by depth-slice migration

Phase Shift Plus Interpolation Migration

As discussed in the chapter on seismic modeling, phase shift plus interpolation (PSPI)
modeling is easily adapted to produce a phase-shift-plus-interpolation style reverse-time
migration, as shown in Figure 4-7. The sources in this case are again the time reversed
traces and the result is a depth image of the zero-offset input data.

Figure 4-7. PSPI FK domain depth-slice by depth-slice migration
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One-Way FKX-Reverse-Time Migration

One-way FKX-reverse-time migration methods can be divided into split-step and phase
screen methods.

Split Step Imaging

The split-step imaging method is a direct application of the split-step modeling method
in Split-Step Methods on page 67. Explaining this method in considerable detail is
beyond the scope of this book. For the purposes here, it is enough to say that the method
splits all downward propagation between the FK and FX domains.

Phase Screen Migration

The so-called phase-screen method, as envisioned by Ru Shan Wu at the University of
California at Santa Cruz, is briefly discussed in Higher Order FKX Methods on page 68.
This method, when compared to the split-step approach, is based on an improved set of
approximations for utilization in the FX domain.

Kirchhoff Style Methods

Kirchhoff migrations are a method of seismic migration that uses the integral form
(Kirchhoff equation) of the wave equation. Kirchhoff style methods can be separated into
single-arrival methods and multiple-arrival methods.

Single-Arrival Kirchhoff Migration

In single arrival Kirchhoff depth migration, as shown in Figure 4-8, either a direct finite
difference solution to the Eikonal equation or full 3D raytracing is used to calculate exact
traveltimes from the source/receiver point to the output image point.
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Figure 4-8. Single arrival Kirchhoff depth migration.

Because Eikonal-based methods are generally able to calculate only first arrivals, they
are no longer popular as part of the general depth migration methodology.
However, raytrace methods facilitate the calculation of multiple arrivals, and the
selection of those arrivals better serves the migration process. Typical arrivals of
this type are maximum energy, minimum distance, or minimum velocity. In areas
with strong lateral velocity variations, such as salt regimes, the minimum velocity
methodology is considered to be optimum since they avoid headwaves caused by
proximity to salt or other high velocity structures.
The utilization of a single arrival in Kirchhoff depth migration technology is one of the
chief reasons these methods cannot image below complex structure.
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Multiple-Arrival Kirchhoff Migration

When we use all of the possible arrivals, as shown in Figure 4-9, we can achieve a
superior result to what is achieved with the single arrival approach. While multiple
arrivals complicate the migration algorithm and generally make it more computationally
costly, the benefit of including more arrivals usually outweighs the increased cost.

Figure 4-9. Multiple arrival Kirchhoff depth migration.

Plane-Wave Migration

Plane-wave migration methods can be divided into pure plane wave methods, beam
stack methods, and Gaussian beam methods.

Pure Plane Wave Migration

The hand migration discussed in the chapter on historical methods and displayed in
Figure 3-5 is in actuality one of the first plane wave migration techniques. The constant
velocity trigonometric solution in that figure provides the formulas for calculating the
migration time, 𝜏, and the lateral shift, 𝑥, to determine the migrated position, 𝑆′.
Figure 4-10 shows how you can avoid the constant velocity assumption completely. In
this figure, the 𝑑𝑡

𝑑𝑥
measured from the unmigrated data, together with the near surface

velocity, determines the cosine of the plane wave takeoff angle, 𝜃, at the zero-offset
location of the reflected arrival from the steeply dipping structure. If we shoot a ray
with this takeoff angle into the subsurface model and continue it until the recorded time
at 𝐴 is exhausted, the orthogonal to the ray will be the dip of the reflected event and
the position of the end of the ray will be its location. Repeating this process for every
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estimated dip ultimately produces a full migration of the recorded zero-offset or stacked
subsection.
Figure 4-10. Hand migration as a beam or plane wave migration.

Beam Stack Migration

Kirchhoff methods are converted to a beam or slant stack approach by simplifying the
manner in which traveltimes are calculated. The idea is to try to use the distance from
a central source or receiver to calculate another traveltime at a nearby location. In two
dimensions, the formula is something like that shown in Equation 4-6, where 𝜏𝑥𝑠􏷩 is theraytraced traveltime from the central location, 𝑥𝑠􏷩, and 𝑝𝑥𝑠􏷩 are suitably chosen scalars.
(4-6) 𝜏𝑥𝑠 = 𝜏𝑥𝑠􏷩 + 𝑝𝑥𝑠􏷩 (𝑥 − 𝑥𝑠)

Noting that 𝑝𝑥𝑠􏷩 must have units of time over distance, we can easily infer that thisvalue must tell us how 𝜏𝑥𝑠􏷩 changes incrementally versus an incremental change in thecentral source position. That is, 𝑝𝑥𝑠􏷩 must have the form in Equation 4-7, which is just thederivative (gradient in 3D) of the traveltime with respect to source position.

(4-7) 𝑝𝑥𝑠􏷩 =
Δ𝜏𝑥𝑠􏷩
Δ𝑥

Traveltimes at a position close to the central point can then be calculated from
Equation 4-8.

(4-8) 𝜏𝑥𝑠 = 𝜏𝑥𝑠􏷩 +
Δ𝜏𝑥𝑠􏷩
Δ𝑥 (𝑥 − 𝑥𝑠) = 𝜏𝑥𝑠􏷩 +

𝑑𝜏𝑥𝑠􏷩
𝑑𝑥
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Equation 4-9 performs a standard zero-offset Kirchhoff migration in 2D, where 𝐴 is a
traveltime correction factor, 𝜏𝑥𝑠(𝑥, 𝑧) is the traveltime from the surface location 𝑥𝑠 to (𝑥, 𝑧),and 𝐷(𝑥𝑠, 𝑡) is the zero-offset data to be imaged as 𝐼(𝑥, 𝑧).
(4-9) 𝐼(𝑥, 𝑧) = Σ𝑥𝑠𝐴(𝑥𝑠)𝐷(𝑥𝑠, 𝜏𝑥𝑠(𝑥, 𝑧))

The basic ideas for this kind of traveltime computation is shown in Figure 4-11.

Figure 4-11. Traveltime computation in terms of local distance from a given
centrally located shot.

Inserting the formula for calculating 𝜏𝑥𝑠 results in Equation 4-10.
(4-10) 𝐼(𝑥, 𝑧) = Σ𝑥𝑠𝐴(𝑥𝑠)𝐷(𝑥𝑠, 𝜏𝑥𝑠􏷩 + 𝑝𝑥𝑠􏷩 (𝑥 − 𝑥𝑠))

Equation 4-10 suggests that we can perform this operation in two independent steps.
First, we calculate the slant stack of our input zero-offset data, 𝐷(𝑥, 𝑡), using Equation 4-
11. Then we simply Kirchhoff migrate this slant stack bundle using Equation 4-12, where
the sum is taken over all 𝑥𝑠 that are sufficiently close to 𝑥𝑠􏷩. The image 𝐼(𝑥, 𝑧) is then justthe sum of all the bundles.
(4-11) 𝐷𝑆(𝑥𝑠􏷩 , 𝑝, 𝜏) = Σ𝑥𝑠􏷩𝐷(𝑥𝑠􏷩 , 𝜏 + 𝑝(𝑥 − 𝑥𝑠􏷩))

(4-12) 𝐼(𝑥𝑠, 𝑧) = Σ𝐴(𝑥𝑠􏷩)𝐷𝑆(𝑥𝑠􏷩 , 𝑝𝑥𝑠􏷩 , 𝜏𝑥𝑠􏷩 )

Since the slant stack can be calculated independently of the migration, and since the
derivative of the traveltime can be calculated during the raytracing, the computational
cost of performing the necessary steps prior to the migration stage is only slightly greater
than that required for a standard Kirchhoff migration.
On the other hand, since the entire slant stack bundle replaces many traces in the
migration process, Kirchhoff-beam-stack methods can be significantly more efficient than
their traditional straight-forward implementations. Typically, these Kirchhoff-beam-stack
migrations are about 10 times as fast as a traditional Kirchhoff approach.

144 Modeling, Migration and Velocity Analysis



Panorama Technologies Migration in Depth

Gaussian Beam Migration

Figure 4-12 demonstrates graphically how we can construct a significant portion of the
required impulse response for a zero-offset trace using what are called Gaussian beams.
The mathematics associated with Gaussian beams is beyond the scope of this book, but
the concepts are worth some explanation. Although somewhat of an over-simplification,
we can think of a Gaussian beam as being equivalent to a phase shift calculation using
a 𝑣(𝜌) velocity function extracted using the arc-length along the ray, 𝜌, as the depth
parameter.

Figure 4-12. A partial wave response due to two rays.

Several corrections to this phase shift are made to ensure that the process works
correctly. First, as the ray calculations proceed, two special functions are calculated at
each increment, Δ𝜌, of the arc length. These functions provide the necessary amplitude
decays parallel and orthogonal to the ray at any given location. Second, the beam is
weighted with the normal Gaussian function to ensure that the sum of all such beams
accurately represents the true impulse response of the migration operator. The result of
applying the corrections is called a Gaussian beam, and its amplitudes are then summed
into corresponding subsurface locations on either side of the central ray. The sum of all
such beams produces the completed impulse response.
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Migration in Time

Time migration moves dipping events from their apparent locations to their true
locations in time. The resulting image is shown in terms of traveltime rather than depth,
and must then be converted to depth with an accurate velocity model. Because of the
clear and direct connection to data synthesis over media described in terms of depth, it
is easy to explain depth migration in the time-reversed sense.
However, even though it can be one of the most accurate imaging methods, depth
migration has not yet reached the acceptance level it deserves. There are many reasons
for this. One reason is the belief by many people that finding the most accurate velocity
is still beyond the reach of most depth-migration methods. This was certainly true
when actually performing a prestack migration of any form was beyond the reach
of the computational capacities of the period. Historically, imaging in time by hand
(see Chapter 1) was easy to explain with virtually no need to even consider partial
differential equations. Interpreters were required to have only limited mathematical
ability to do the migration and could perform all depth conversions as a simple vertical
stretch.
Moreover, as shown in Figure 3-17 and discussed in Chapter 1, interpreters could
compute the migration position and time quite easily using only an appropriate RMS
velocity and locally estimated dip. Consequently, the coupling of readily available
computer power with multi-fold data for estimating stacking velocities led directly to
a plethora of time-migration versions of the depth migration algorithms listed in the
previous sections.

Converting to Vertical Time

Converting depth migration algorithms into time migration algorithms is not difficult,
but the process is not easy to explain fully without detailed mathematical analysis.
In 2D, vertical time, 𝜏, is defined by Equation 4-13, where 𝑧 is depth, and 𝑣(𝑥, 𝑧) is a two-
dimensional velocity function.

(4-13) 𝜏(𝑧) = 􏾙
𝑧

􏷟

𝑑𝑧
𝑣(𝑥, 𝑧)

There is, of course, a 3D version of this equation, but for simplicity we will only consider
the 2D case.
With this as our variable of choice, the two-dimensional equation governing our
wavefield takes the form of Equation 4-14, which, on the surface, appears to be little
different from the depth equation on which all modeling and depth imaging is based.

(4-14) 𝜕􏷡𝑢
𝜕𝜏􏷡 +

𝜕􏷡𝑢
𝜕𝑥􏷡 =

1
𝑣􏷡
𝜕􏷡𝑢
𝜕𝑡􏷡
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The problem is that this equation has two time variables. One, 𝑡, is the actual time
governing wavefield propagation, and it is what we record in the form of arrival times.
The other, 𝜏, is simply the conversion of vertical depth to time. The key point to all of
this is that wavefields do not travel in vertical time, they propagate in space. Therefore,
the problem is how can we solve Equation 4-14 for the image at time 𝜏.
Jon Claerbout (1976) found a unique solution to this problem. He first recognized that
vertically propagating solutions of this equation are constant along level lines, 𝑡 + 𝜏 =
constant. He then made a change of variables from 𝑡 to 𝑡′ = 𝑡 + 𝜏, and then ignored all
higher order derivatives. The result is

(4-15) 𝜕􏷡𝑢
𝜕𝑥􏷡 =

1
𝑣􏷡
𝜕𝑢
𝜕𝑡′

𝜕𝑢
𝜕𝜏

This equation can be solved discretely quite easily. The transformation from Equation 4-
14 to 4-15 is not unlike the factorization into one-way equations in the Modeling
chapter (Chapter 2), and so virtually all of the concepts and ideas incorporated in
depth migration algorithms are also part and parcel of the time migration scene. In
the same manner that factoring the full two-way equation into two one-way equations
theoretically limited propagation to no more than 90 degrees, approximating Equation 4-
14, another easily solvable equation, also reduces the dip response of any image.
Perhaps the only significant difference between the one-way depth approach and the
one-way time migration approach is that the latter is almost always cast as an implicit
scheme. Because the required matrix inversion is relatively simple, this does not result
in a computationally intense algorithm. Thus, time migration as practiced in the past is
quite efficient.

The Major Difference between Time and Depth Migration

The major difference between time and depth migration is directly related to the
transformation from depth, 𝑧, to vertical time, 𝜏. This difference is illustrated in
Figure 4-13, which provides a graphic of what happens when the velocity varies in any
direction. Depth migration accurately places the imaged event at its image ray time
location, while time migration continues to place the migrated event at vertical time.
Large lateral placement errors are the rule when the velocity varies strongly. This is
a major reason to prefer depth migration over pure time-migration approaches, but it
is not the only reason. Ray bending is also extremely limited because time migrations
utilize RMS velocities instead of true interval velocities.
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Figure 4-13. The major difference between time and depth.

Dip Limits

As we saw in the chapter on modeling, factoring the full two-way equation limited one-
way propagation to 90 degrees, since almost any implementation of a one-way method
decreases the dip response. In depth migration, the basic problem arises from the need to
approximate the square-root term in the one-way equation. The approximation is usually
the result of truncating a Taylor series, but it can also result from other approximations.
In vertical-time migrations, an entirely different equation replaces the fundamental
wave equation, but its approximation is the result of truncation and also results in a
decreased dip response. This decrease is clearly evident on any comparison between
the algorithmic and exact impulse responses. It is not surprising that the recognized
definition of dip limits was based on where the impulse response breaks down. Figure 4-
14 shows how dip limits are defined.

Figure 4-14. Algorithmic dip limit definitions.

Using this definition, it is possible to show that the dip limit of early time migration
algorithms did not exceed 15 degrees. Consequently, they were called 15 degree
algorithms. Increasing the approximation accuracy by using additional terms in series
approximations produced algorithms with 45 and even in some cases 60 degree limits.
Using three or more terms ultimately resulted in diminishing returns and there was
an upper limit of around 80 degrees. Although there are many different domains of
application, the process almost always revolves around some type of series expansion of
either the square root term or its time-domain equivalent.
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One-Way XT Time Migration

The simple model shown at the top of Figure 4-15 was designed to test the basic
concepts of zero-offset seismic migration or imaging. The model consists of 16 flat
and 16 dipping events in a constant velocity medium, where the first dipping event is
actually flat. Since the medium has constant velocity, there is absolutely no difference
between running a time or a depth migration algorithm. We will test our first migration
by running one-way time migration algorithms that are limited to 15 and 45 degree dip
responses. The idea is to see just how good of a job we can do with a more or less naive
approach.

Figure 4-15. Simple constant velocity model with dipping events from 0 to 70
degrees.

The data shown at the bottom of Figure 4-15 demonstrates several of the usual rules of
thumb concerning seismic data. In this case, since the data was synthesized numerically,
it is pure zero-offset data; that is, there is no separation between the source and receiver
used to synthesize it.
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The 15 degree approach shown in Figure 4-16 exhibits one of the most difficult aspects
of migration. Imaging steeply dipping events is very much a function of the accuracy of
the approximations used to make the algorithm workable.

Figure 4-16. Application of a 15 degree equation and the impact of interpolation.

In the lower half of this figure, we see under-migrated events. Visual inspection
reveals that the highest correct dip on the section is approximately 20 degrees. This
is a bit higher than the 15 degrees the model study suggests is possible, but well
within the expected error of the method. The bottom of this figure also demonstrates
something called grid dispersion. This phenomenon is a complex part of the algorithm’s
implementations, but is easily handled by interpolating to a finer sample interval. The
top half of the figure demonstrates that although the grid dispersion can be removed
quite easily, the improper placement of the steep dips is still apparent.
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If we move to a more accurate algorithm, in this case a 45 degree approximation,
as shown in Figure 4-17, we see that we can easily achieve proper placement up to
approximately 55 degrees. In this case, grid dispersion is not as much of a problem, even
though it is still present. The more accurate implementation has achieved much better
overall results.

Figure 4-17. Application of a 45 degree equation and the impact of interpolation.
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One-Way FK Time Migration

One-way FK time migration can be separated into a phase shift migration method and a
phase shift plus interpolation (PSPI) method.

Phase Shift Migration

Phase shift migration in time is actually based on an approximation of the transformed
wave equation, Equation 4-15. However, the process of down shifting the surface
exploding reflector data is given by Equation 4-16, where 𝜑 is defined by Equation 4-17.
Variable 𝑣𝑟𝑚𝑠 is the RMS velocity between 𝜏 and 𝜏 + Δ𝜏, and is virtually identical to its
depth counterpart given by Equation 2-127.
(4-16) 𝑈(𝑘𝑥, 𝜏 + Δ𝜏) = exp (−𝚤𝜔𝜑Δ𝜏)𝑈(𝑘𝑥, 𝜔)

(4-17) 𝜑 = 𝑘􏷡𝑥􏿵
𝑣𝑟𝑚𝑠
𝜔
􏿸
􏷡

Phase Shift Plus Interpolation

Phase-shift-plus-interpolation (PSPI) time migration is identical to the depth migration
explained in Phase Shift Plus Interpolation Migration on page 139. The only noticeable
difference is that the down shift takes place in migrated time rather than migrated
or imaged depth. Multiple velocities can be phase shifted to form the basis of an
interpolation scheme in either space-time or frequency-space to make sure that the
process is accurate, effective, and fast.

Kirchhoff Style Time Migration

Kirchhoff style time migration can be separated into straight-ray Kirchhoff time
migration and curved-ray Kirchhoff time migration.

Straight-Ray Kirchhoff Time Migration

Straight ray Kirchhoff migration does not really do what the name implies. The method
is patterned on Figure 3-17 and the RMS velocity as defined in Equation 3-4.
As shown in Figure 4-18, the method selects an RMS velocity function at the output
image location, 𝐼, and then uses it in the traditional traveltime Equation 4-18 to compute
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the required traveltime from the source to the image point and back to the coincident
receiver. Once this time, 2𝜏𝑆, is available, the method selects the amplitude from the
trace at surface location 𝑆, and adds the output to the location 𝐴 at time 𝜏.

Figure 4-18. Straight ray Kirchhoff Migration.

The blue line indicates all image points with the same output migration time. In a
constant velocity medium, this equal-traveltime curve is actually a circle and represents
the set of points which are equally likely points from which energy might be reflected.
This process was the de facto Kirchhoff algorithm for many years and was one of the first
to be computerized.

Curved-Ray Kirchhoff Time Migration

Equation 4-18 is the traditional traveltime formula for the time between a source at a
distance from a surface point, 𝑚, and an image point located directly below 𝑚 with a
vertical traveltime of 𝜏􏷟.

(4-18) 𝜏 =
􏽱
𝜏􏷡􏷟 +

ℎ􏷡

4𝑣􏷡

This is a truncation of a series of the form shown in Equation 4-19, where 𝑐􏷠 = 􏷠
𝑣􏷫
is the

reciprocal of the RMS velocity, 𝑣. As shown in Figure 4-19, the rest of the 𝑐𝑖 values are
complicated modes of the interval velocity function, 𝑣(𝑖Δ𝑧).

(4-19) 𝜏􏷡 = 𝜏􏷡􏷟 + 𝑐􏷠(𝑚 − 𝑆)
􏷡 − 𝑐􏷡(𝑚 − 𝑆)

􏷣 + 𝑐􏷢(𝑚 − 𝑆)
􏷥 −⋯
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Figure 4-19. Curved ray traveltimes.

Figure 4-20 shows how curved ray Kirchhoff migration works using the full series
representation shown in Figure 4-19.

Figure 4-20. Curved ray Kirchhoff time migration.

Calculating the traveltime through a velocity medium that varies only in the vertical
direction ensures that the migration is identical to those that would be obtained using
a raytracer. In effect, a curved ray time migration is identical to performing a depth
migration using a different 𝑣(𝑧) for each output location and then outputting the result
in vertical time.
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Cascaded Migration

Figure 4-21 shows how migration algorithms can be cascaded to improve the overall
response of the final migration.
Figure 4-21. Cascaded Migration.

In some cases, the combination of several poor migration techniques produces a
migration that is superior to each individual migration methodology. Each successive
migration takes place with a migration field that is constructed from a small portion
of the final velocity field and a constant velocity. Usually, the piece of the final field
is chosen so as not to have any strong variations. After migrating with the constructed
field, the next migration begins where the last one left off. That is, the new time zero is
defined by the time at which the constant velocity functions intersect that portion of the
final velocity field used during this stage of the cascade.
Almost any migration algorithm can be cascaded. The basic problem is that cascaded
migrations are theoretically correct only when the cascade is performed after a constant
velocity migration. This, in effect, means that the cascade concept can only be applied
effectively after a completely straight-ray time migration.
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Migration Summary

There is no question that two-way finite difference methods offer the potential for
the most accurate images any migration algorithm can produce. If we know the exact
subsurface wavefield at the last recorded time, the output from this technique provides
an exact answer. It images all events from which reflections occur at precisely the
correct reflectivity. Consequently, it is the ultimate goal of all migration algorithm
developers. Its only algorithmic problems are its extreme computational requirements
and that it can produce unusual artifacts that are difficult to explain when incorrect
Earth models are used.
However, full two-way reverse time migration has no velocity sensitivities, it has no dip
limitations, and, in the prestack sense, it is the only approach that accurately handles all
amplitude issues.
Phase-shift-plus-interpolation (PSPI) represents a very simple extension to the pure
phase-shift approach. It uses the phase shift algorithm with multiple constant velocities,
and then interpolates as needed to achieve the proper image at each image point on
the current depth or time slice. It was very likely the first FK-style method that was
able to at least partially remove both the 𝑣(𝑧) assumption and still retain a reasonable
dip response. The quality of PSPI algorithms is still a function of the accuracy of the
implementation, but, nevertheless, most such algorithms are quite good. Like its phase-
shift counterpart, it can be extended to include some full two-way propagation. Because
the interpolation step in PSPI can be somewhat difficult, and because each application
of the phase shift method adds to the overall cost, alternatives to the method have been
sought.
Split-step methods attempt to avoid the interpolation step of PSPI methods through
a different approximation to the underlying wave-equation. In effect, this approach
was one of the first to use a dual domain approach. The “shift” is accomplished in the
FK domain, while the modification of the interpolation step is accomplished in the
FX domain. When this method was published, it was thought to provide an improved
approach to PSPI, but this did not prove to be the case.
Generalized phase screens are really split-step algorithms with additional terms to
increase the overall dip-response and improve accuracy. The key difference between a
split-step algorithm and a phase screen method is that the phase screen methods have
additional correction terms in (𝐹, 𝑋) space, and, as a result, should produce a more
accurate, less sensitive algorithm when properly implemented. Again, like the original
phase shift method, generalized phase screens can be modified to include some forms of
two-way propagation.
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Chapter5
Exploding Reflector Examples

Let’s turn our attention to a few simple zero-offset examples. In this case, we only want
to compare algorithms. True zero offset data should provide a complete and accurate
image of the subsurface. Since the data we will image is synthetic, we will have an exact
representation of the true result.
Using our exploding reflector modeling approach, we generate what might be called true
zero-offset seismic sections. These sections are then migrated using some new and some
very old methods. Visual comparisons provide conclusive evidence that using the most
accurate algorithm usually produces the best possible image.
If we are correct in our theoretical analysis, reverse time migration should produce
almost exactly the correct answer in the following examples. Since reverse-time
migration does not have any information about amplitudes in the subsurface at the start
of the migration, we should not expect a perfect result. Nevertheless, the final reverse-
time image should be the best, so we will use it as the baseline throughout the following
examples.
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Canadian Glauconitic Channel Play

Figure 5-1 shows a hard rock channel play velocity model together with a zero-offset
exploding reflector simulation. Two channels are visible just below 700 meters. This
model is based on glauconitic channel plays in Canada. The job is to image the channels
just below 1300 milliseconds.

Figure 5-1. A shallow hard-rock-channel play from Alberta Province in Canada.

Figure 5-2 shows a pure phase-shift migration versus a two-way reverse time migration.
Note that while the phase-shift was performed as a time migration, and the reverse time
migration was actually a depth migration, a simple squeeze plot of the depth migration
provides an excellent basis for direct comparison between the two images.

Figure 5-2. Phase shift versus full two-way-reverse-time migration.
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In Figure 5-3, the 45 degree migration was produced by an approximation to the one-
way wave equation that was expected to image dips only up to approximately 45
degrees. Such migrations were the rule for many years and were considered to be the
best possible migrations by many contractors. Clearly, the reverse-time migration on
the right is superior to the 45 degree migration on the left. In this case, the improved
accuracy of the reverse time method is preferable.

Figure 5-3. 45 degree time migration versus full two-way-reverse-time
migration.
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The FK or Stolt migration on the left of Figure 5-4 works well for this example. Velocity
variations are not strong, so the constant velocity assumptions inherent in this approach
are not a serious issue. Still, the reverse-time migration on the right is probably better.

Figure 5-4. FK versus full two-way-reverse-time migration.

Figure 5-5 shows that cascading migrations produce the best comparison between
migration techniques. However, the reverse-time migration still has fewer artifacts and
appears much clearer.

Figure 5-5. Cascade versus full two-way-reverse-time migration.
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Gulf of Mexico Salt Model

Figure 5-6 shows a typical Gulf of Mexico salt structure with associated zero-offset
exploding reflector synthetic data. The play here is in the beds that terminate at the
salt-sediment interface. The geology is such that, except for the salt-sediment interface,
velocity variation is relatively small.
However, from an imaging point of view, the extreme 2:1 or even in some cases 3:1,
velocity contrast between the sediment and the salt represents a very difficult problem
for most imaging algorithms to handle. The challenge is to image the salt face and the
corresponding sediment terminations. The Gulf of Mexico salt structure has some of the
steepest dips of all the models considered in this section. We should expect reverse time
migration to win this contest easily.

Figure 5-6. A Gulf of Mexico Salt Earth Model and Exploding Reflector Data.
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Figure 5-7 compares phase shift migration versus two-way reverse time migration. As we
will see, regardless of which migration algorithm we use, the reverse time approach does
the best job of placing all the events at their proper location. Unlike its time-domain
based counterparts, it places all events as close as possible to where the velocity model
says they should be.

Figure 5-7. Phase shift versus full two-way-reverse-time migration.

Figure 5-8 compares 45 degree migration versus two-way reverse time migration. From a
purely esthetic point of view, we could argue that the 45 degree migration on the left is
superior to the reverse-time migration on the left. One reason for this is the inherent dip-
filtering that the 45 degree limit produces. Dips beyond 45 degrees are essentially lost,
so the salt face will never be properly imaged, but because they are lost, the image looks
much cleaner.
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Figure 5-8. 45 degree versus full two-wayreverse-time migration.

Figure 5-9 compares FK migration versus two-way reverse time migration. Because it is
so sensitive to the constant velocity assumption used to derive it, an FK migration has no
chance of imaging the salt face at its proper position. What is more surprising is that the
salt face is almost not imaged at all.

Figure 5-9. FK versus full two-way reverse-time migration.

The cascade migration in Figure 5-10 does a very nice job on this zero-offset data set.
We can argue that it is in fact the best of all the time-migration results. Nevertheless, the
image is not nearly as good as the two-way graphic on the right.
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Figure 5-10. Cascade versus full two-way-reverse-time migration.

Granitic Overthrust

Figure 5-11 shows a granitic overthrust model from the Northern United States together
with a simulation of a zero-offset section using that model. The problem is to unravel
this data and put it back in its proper location. The objective are the sediments below
the granite thrust.

164 Modeling, Migration and Velocity Analysis



Panorama Technologies Granitic Overthrust

Figure 5-11. A Granitic overthrust example from the state of Wyoming in the
United States of America.

Granitic overthrusts are certainly as difficult to image as salt structures. Granitic
structures are representative of structures with velocity contrasts between 3 and 3.6 to
1, where granite velocities are usually between 6800 and 7000 m/s, while near surface
velocities are in the neighborhood of 1800 m/s.
Imaging the top and base of such structures with a time migration is almost impossible.
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Figure 5-12 shows that a comparison of phase shift migration with reverse time
migration is in reality no comparison at all. A single velocity function simply cannot
cope with the extreme variation in the actual Earth model.

Figure 5-12. Phase shift versus full two-way-reverse-time migration.

Figure 5-13 shows that an FK migration is no better than the phase shift of the previous
figure.
Figure 5-13. FK versus full two-way-reverse-time migration.
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In contrast to the previous methods, the cascade migration shown in Figure 5-14 does a
superior job of imaging above and to the left of the granitic intrusion, but simply cannot
image anything below the granitic overthrust accurately.

Figure 5-14. Cascade versus full two-way-reverse-time migration.
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Chapter6
Prestack Time and Depth
Migration

Prestack migration algorithms are relatively simple variants of the poststack
methodologies. The primary difference lies not in the mathematical theory but in
the way in which any given algorithm is structured and applied to recorded multi-
fold data. The basic differences arise because the prestack method must handle non-
coincident sources and receivers. This means that it must handle the traveltime issues
and amplitude correction factors associated with the source and similar issues for each
and every receiver.
To resolve this issue, it is normal to split the imaging problem into two independent
pieces. One piece handles the traveltime and amplitude from the source to the image
point, while the other handles the traveltime and amplitude from the image point to
the receiver. When both pieces are based on the same modeling approach, the names of
the prestack algorithms are frequently identical to those given to the poststack methods
from which they arose. When the two pieces are based on technically different methods,
the resulting algorithm is assigned a hybrid combination of the two names. Figure 4-1
details these methodologies and becomes the framework for the discussion on zero offset
technologies.
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Wavefield and Wave-Motion Hierarchies

In Chapter 8, we noted the possibility of recording elastic as well as acoustic data.
Figure 6-1 shows a simplified diagram of the kinds of waves you might encounter in a
typical seismic acquisition experiment.

Figure 6-1. Wavefield hierarchy

At the top of Figure 6-1, we see what is probably closest to what happens in the real
earth. It is what we should record if we are serious about producing the best possible
representation of the subsurface rocks. At the bottom, we see the kinds of waves that
most of the migration algorithms of the recent past were designed to handle. This focus
on the lowest rung of the ladder was dictated by the lack of sufficient computer power to
consider imaging anything other than acoustic waves.
Between these two extremes, we see a wavefield middle ground that was once
considered to define a sufficient data set for most, if not all, exploration goals. This has
also proven to be false. While it is quite easy to construct middle-ground algorithms
based on the technology we have discussed to this point, the possibility of stepping from
the bottom rung to the top rung is rapidly making the middle rung obsolete. Moreover,
what is important is that zero-offset methods have little or no chance of imaging the
complex kinds of waves that occur in the earth. Effective imaging of compressional and
shear waves that constantly convert from one to the other can only be contemplated
through the use of prestack methods.
Wavefields in almost any medium radiate in all directions. The normal at any given
subsurface location to the propagating wave front points in the direction of what we
commonly think of as a ray. Since the propagation is normally not constrained with
regard to direction, this normal is allowed to point in any direction consistent with the
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sound speed of the medium. If the normal points upward, we say that this is an upward
traveling wave. If it points downward, we call it a downward traveling wave. Clearly,
such fields change directions at 45 degrees and become purely horizontal waves at 90
degrees. As we track any given normal or ray, we quickly observe that not only can it
travel horizontally but it can also turn up and propagate upward.
Figure 6-2 shows the kind of wavefields we can model based purely on choice of
algorithm. Choosing one of the algorithms defined in Figure 4-1 means that we
inherently assume the propagation characteristics of that particular approach. Unless we
happen to choose the algorithm that exactly fits the actual earth propagation, some part
of the true wavefield will not be properly imaged. It should be clear that any assumption
limiting wavefield directions cannot be correct: It cannot accurately handle amplitudes;
it will likely produce artifacts; and it may not be able to image recorded events.

Figure 6-2. A wave-motion hierarchy.

The only good news is that every algorithm in Figure 4-1 on page 134 is simply an
approximation to the more accurate one at the top. Thus, given results from the bottom
level, we should be able to step up to the next level, by simply running the more
accurate approach.
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Shot Profile Prestack Migration

Shot profile migration is a process by which each shot record is migrated separately and
the result is summed into the final image volume. This process is sometimes also called
common-shot migration or just shot migration.

Performing Shot Profile Migration

Shot-profile migration consists of three steps. In the first step, a synthetic shot is
generated and propagated into the Earth. In the second step, receiver traces are reversed
in time, used as sources in the modeling code, and then downward continued into the
Earth. The third step forms an image at each depth or time slice through the application
of an appropriate imaging condition.
This three-step approach is based on what is known as the cross-correlation method and
was popularized by Jon Claerbout (1971, 1986). Figure 6-3 conceptualizes the basic
ideas. The left hand side of this figure represents the forward propagation of the shot
into the Earth, while the right hand side shows the backward propagation of the traces
corresponding to this shot. In this figure, shot synthesis is generating a downward
traveling wavefield, while the backward propagation of the receiver traces is generating
what ultimately becomes an upward traveling wavefield.

Figure 6-3. Migration of common shot profiles

Note that we can choose virtually any pair of modeling algorithms for the basis of shot-
profile migration. When a full two-way approach is used for both the shot and receiver
steps, the result is a full two-way algorithm. When a one-way wave equation is used for
both the shot synthesis and receiver back-propagation, the result is definitely a one-way
method. Of course, it is possible to use two different modeling methods. We could use
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a raytrace-based method for the shot synthesis and a full two-way back-propagation for
the time-reversed receiver traces. Virtually any combination of the modeling algorithms
discussed in Chapter 2 on page 7 is possible, so the number of prestack shot profile
methods is quite large. We will avoid giving these hybrid methods names, but we will
attach names to methods for which the shot synthesis and receiver back-propagation
methods are algorithmically identical.
Understanding shot-profile migration is mainly dependent on comprehension of the third
(imaging-condition) step of the shot-profile migration methodology since the modeling
pieces are straight forward. To help understand the imaging condition, recognize that,
as shown by the red dot in the movie corresponding to the image in Figure 6-4, each
subsurface image point can be thought of as a seismic receiver that records signals
from both the source and the receivers. The trace from the downward traveling source
wavefield registers no arrivals until the first source amplitude arrives after 𝜏𝑆 seconds.
This, of course, is the time it takes for energy from the source to ignite the virtual
reflector at the image point.

Figure 6-4. A wavefield arriving at a subsurface image point (in red)
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An example of such a trace showing two arrivals recorded from a source is shown in the
top trace in Figure 6-5. An example of a second trace showing three arrivals from the
backward propagated receivers is shown in the bottom trace. Because it was generated
from time-reversed traces, amplitudes at the longest time are due to amplitudes recorded
at the maximum recording time, 𝜏𝑚𝑎𝑥. After backpropagating for 𝜏𝑚𝑎𝑥 − 𝜏𝑆 seconds,
the full wavefield that radiated out from the image point as it acted as a virtual source
has arrived at the receiver located at the image point. At this time stamp, there are
still 𝜏𝑆 seconds left to propagate, but none of these amplitudes will be recorded at the
image point. Thus, both traces contain exactly two arrivals. Imaging is accomplished
by summing all the amplitudes in a a point-by-point multiplication of the two traces and
then adding the result to the image point location. This is exactly Jon Claerbout’s cross-
correlation imaging condition (1971, 1976) in graphic detail.

Figure 6-5. Downward (source) and Upward (receiver) arrivals at a subsurface
image point

Figure 6-6 is a further attempt to clarify Claerbout’s imaging condition. This figure
shows a subsurface model with a single point reflector in red on the face and the time
section indicated by the blue arc on the top. It contains three potential point reflectors
indicated by two black dots and one red dot. The red dot is the only point reflector in
the model.

174 Modeling, Migration and Velocity Analysis



Panorama Technologies Shot Profile Prestack Migration

Figure 6-6. Point reflector response with forward source and backward receiver
wavefields at two subsurface locations.

We see that events on the two recorded traces do not overlap at the upper black image
point. Thus, applying the imaging condition produces zero amplitude and no reflectivity,
as predicted, and no point reflector is detected. On the other hand, at the black dot that
is near the red point reflector, the events on the two traces may be close enough to the
red dot to produce a small amplitude, and as a result the point reflector begins to be
detected. Claerbout’s imaging condition is just the ticket for detecting the only point
reflector in the model.
It may not be surprising that there was more than one arrival in each of the two traces
at the image point. As indicated in the propagating wavefield in Figure 6-4(a), multiple
paths from the source location to any subsurface image point is probably the norm in
complex geology. In spite of that, it is important to recognize that there are several
algorithms that make the surprising assumption that only one arrival is present at each
subsurface location. We will see that single arrival methods, while useful, are very
sensitive to the kinds of velocity variations seen in even relatively simple geologic
settings.
As was the case on historical approaches in Chapter 3, migration was performed by
hand on a shot-by-shot basis. In that case, the imaging was based on direct estimation
of local dips coupled with a crude velocity guess. To emulate this process using our
modeling methods, it was necessary account for the propagation from the source to the
reflection point, and from the reflection-point to the receiver for each and every trace
in our survey. This was accomplished by a forward shot propagation and a backward
propagation using the recorded data reversed in time as sources. Clearly, both steps
could employ exactly the same modeling code. The only real difference between the two
is that one used synthetic source data while the other used the actual recorded data in
reverse time order. Do not be discouraged if this does not seem simple or intuitive. In
1971, very few practicing geophysicists thought anything like this would ever be possible
and many thought Claerbout’s method would never be practical. They were wrong.
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In precise mathematical terms, Claerbout’s time-coincident imaging condition is
mathematically represented by Equation 6-1, where 𝐼(𝑥, 𝑧) represents the seismic
amplitude at the position (𝑥, 𝑧) in space and depth, 𝑆(𝑡, 𝑥, 𝑧) is the downward traveling
source wavefield, and 𝑃(𝑡, 𝑥, 𝑧) is the backward-propagating seismic-shot record.
(6-1) 𝐼(𝑥, 𝑧) = 𝑆(𝑡, 𝑥, 𝑧) ⊗ 𝑃(𝑡, 𝑥, 𝑧) ⇒ 𝑡 = 0

In this case, ⊗ is interpreted to mean cross-correlation and⇒ 𝑡 = 0 means to evaluate
at zero time for this depth. This process usually takes place in the frequency domain,
so evaluation at time zero just means to sum over frequency. In this case, the formula is
given by Equation 6-2.

(6-2) 𝐼(𝑥, 𝑧) =􏾝
𝜔

𝑆(𝜔, 𝑥, 𝑧)𝑃(𝜔, 𝑥, 𝑧)

Refinements to this simple process abound. One of the simplest improvements is given
by Equation 6-3.

(6-3) 𝐼(𝑥, 𝑧) =
∑𝜔 𝑆(𝜔, 𝑥, 𝑧)𝑃(𝜔, 𝑥, 𝑧)
∑𝜔 𝑆(𝜔, 𝑥, 𝑧)𝑆(𝜔, 𝑥, 𝑧)

This improvement in the frequency domain normalizes Equation 6-2 by the spectrum of
the source wavefield. Because the source wavefield is what illuminated the subsurface
in the first place, dividing by this value has the general affect of correcting for uneven
illumination. It generally results in improved amplitude preservation, but should not be
considered as the final word in amplitude preservation.
When the velocity field is exact, the imaging condition, as described by equations 6-1
and 6-3, produces sharp and accurate maps of subsurface reflectivity. When the velocity
field is incorrect, many point reflectors may not be imaged or may be imaged very
poorly.
It is quite natural to ask if there is some modification to the image condition that might
make it possible to assess the accuracy of the velocity field or even to produce a method
to estimate velocity corrections. One answer to this question is given by the non-zero
offset imaging condition in Equation 6-4, and the other by the time shift zero offset
condition in Equation 6-5.
(6-4) 𝐼(𝑥, 𝑧, ℎ) = 𝑆(𝑡, 𝑥 − ℎ, 𝑧) ⊗ 𝑃(𝑡, 𝑥 + ℎ, 𝑧) ⇒ 𝑡 = 0

(6-5) 𝐼(𝑥, 𝑧, 𝜏) = 𝑆(𝑡 − 𝜏, 𝑥, 𝑧) ⊗ 𝑃(𝑡, 𝑥, 𝑧)

In Equation 6-4, ℎ is a scalar with units of feet or meters at depth that measures where
the two wavefields achieve maximum lateral correlation. It defines a range of subsurface
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offsets that, in principle, offers the possibility for sensing and correcting for velocity
errors. When the migration velocity is incorrect, the best image will appear at some
positive or negative ℎ. How far the wavefields are separated can be used to estimate a
new velocity volume or field.
In Equation 6-5, 𝜏 is a scalar at depth with units of time that tells us how close the two
wavefields are in time at depth. The scalar 𝜏 is not directly related to surface time;
it is merely a value indicating the difference between forward source and backward
receiver times. Instances where non-zero 𝜏’s produce the best image indicate inaccurate
velocities, and the value of 𝜏 becomes useful in estimating a new velocity field.
It is worth noting that both of these approaches can be converted to methods that
produce gathers parameterized by opening or reflection angle and azimuth in 3D. The
mathematics are beyond the objectives of this book, but these migration angle gathers
can be analyzed in much the same way that more traditional offset gathers are currently
used to estimate subsurface velocities.
In the frequency domain, equations 6-4 and 6-5 have the forms in equations 6-6 and 6-7.

(6-6) 𝐼(𝑥, 𝑧, ℎ) =
∑𝜔 𝑆(𝜔, 𝑥 − ℎ, 𝑧)𝑃(𝜔, 𝑥 + ℎ, 𝑧)
∑𝜔 𝑆(𝜔, 𝑥 − ℎ, 𝑧)𝑆(𝜔, 𝑥 + ℎ, 𝑧)

(6-7) 𝐼(𝑥, 𝑧, ℎ) =
∑𝜔 𝑒𝚤𝜔𝜏𝑆(𝜔, 𝑥, 𝑧)𝑃(𝜔, 𝑥, 𝑧)
∑𝜔 𝑒𝚤𝜔𝜏𝑆(𝜔, 𝑥, 𝑧)𝑆(𝜔, 𝑥, 𝑧)

.
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Shot Profile Migration Example

The black lines in Figure 6-7(a) show the location of three shots with receivers spanning
the entire model. Part (b) shows one-way shot profile migrations of these shots. Note
that each migration images a substantial portion of the subsurface. These images were
actually produced using the imaging condition of Equation 6-3. Thus, the process
included approximate correction for illumination.

Figure 6-7. Shot profile images

(a). A Gulf of Mexico Earth model and synthetic shot profile

(b). Shot profile migrations of shots over the model in (a)

As noted earlier, every algorithm in Figure 4-1 can be used as part of a shot profile style
migration method.

• Pure XT algorithms are either one-way or two-way and are usually implemented
using finite difference approximations.

• Of the FK methods, only the PSPI method is popular.
• The most popular one-way method is based on the FKX phase screen method of Ru
Shan Wu and colleagues, or on methods that are slight variants of this technique.

• Plane wave modeling techniques are also in demand because they can be applied
very efficiently.

• In contrast, raytrace (Kirchhoff) shot-profile approaches are not popular because
this method is usually implemented to image common-offset volumes rather than
shots. This structure facilitates the production of common-offset image gathers, and
their use directly affects estimation of interval velocities.
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Combinations of these methods are rare. Some that probably should have received
attention include combinations of Gaussian Beam and two-way-reverse-time, as well as
Gaussian Beam and one-way-phase screen or PSPI.

Partial Prestack Migration: Azimuth Moveout (AMO)

Except for pure land acquisition, it is generally very difficult to record pure common
offset or pure common azimuth data. Economics limits such recording on land, and
cable feather makes marine acquisition of such data almost impossible. Consequently,
methods have been developed to map recorded data into the proper framework. One
such approach is azimuth moveout (AMO), which is the combination of DMO to a zero
offset, followed by inverse DMO to a fixed non-zero offset. Figure 6-8 is a revision of
Figure 3-30.

Figure 6-8. Constant velocity non-zero offset equal traveltime curve.

With a little bit of Greek mathematics, it shows that the time, 𝑡, of the equal traveltime
curve in a constant velocity medium satisfies the elliptical equation in Equation 6-8,
where, of course, 𝑡 is the traveltime from 𝑆 to 𝑃 to 𝑅, and ℎ = (𝑅 − 𝑆)/2 is the half offset.

(6-8) 𝑥􏷡
(𝑣𝑡)􏷫

􏷣

+ 𝑧􏷡
(𝑣𝑡)􏷫

􏷣
− ℎ􏷡

= 1

It is interesting to determine the time, 𝑡􏷟, in terms of 𝑣, 𝑡, and ℎ, but doing so is not
completely straightforward mathematically. What we first need to recognize is that 𝑡􏷟 in
Equation 6-8 lies on the circle defined by Equation 6-9.

(6-9) (𝑥 − 𝑏)􏷡 + 𝑧􏷡 = (𝑣𝑡)􏷡

4
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For readers with a bit of calculus, if we take the derivatives of Equations 6-8 and 6-9
with respect to 𝑥, we get, respectively, Equation 6-10 and Equation 6-11.

(6-10) 𝑥
(𝑣𝑡)􏷫

􏷣

+
𝑧􏸷𝑧
􏸷𝑥

(𝑣𝑡)􏷫

􏷣
− ℎ􏷡

= 0

(6-11) (𝑥 − 𝑏) + 𝑧Δ𝑧Δ𝑥 = 0

Note that Δ𝑧/Δ𝑥 is the slope of the local tangent or, more practically, the slope of the
reflecting migrated event if 𝑃 was its location. Using Equation 6-11 to eliminate Δ𝑧/Δ𝑥
from Equation 6-10 yields Equation 6-12.

(6-12) 𝑏 =
⎛
⎜
⎜
⎝
1 −

(𝑣𝑡)􏷫

􏷣
− ℎ􏷡

(𝑣𝑡)􏷫

􏷣

⎞
⎟
⎟
⎠
𝑥

After simple algebraic manipulations, the result is Equation 6-13. What this formula tells
us is that the zero-offset time, 𝑡􏷟, is a function of the offset, ℎ, the velocity, 𝑣, and the
traveltime, 𝑡.

(6-13) 𝑡􏷡􏷟 =
⎛
⎜
⎝
𝑡􏷡 − 4ℎ

􏷡

𝑣􏷡
⎞
⎟
⎠

⎛
⎜
⎝
1 − 𝑏

􏷡

ℎ􏷡
⎞
⎟
⎠
= 𝑡􏷡

⎛
⎜
⎝
1 − 𝑏

􏷡

ℎ􏷡
⎞
⎟
⎠
− 4ℎ

􏷡

𝑣􏷡
⎛
⎜
⎝
1 − 𝑏

􏷡

ℎ􏷡
⎞
⎟
⎠

A key point is that 𝑡 is the input time on the input trace and 𝑡􏷟 is the zero-offset time.
What we want a DMO process to do is to map data at time 𝑡 to data at time 𝑡􏷟. A bit
of trickery due to D. Forel and G.H.F. Gardner (1986) makes this possible. What they
wanted after DMO processing was a data set that satisfied an equation of the form in
Equation 6-14 for each new offset 𝑘.

(6-14) 𝑡􏷡􏷠 = 𝑡􏷡􏷟 +
4𝑘􏷡

𝑣􏷡

They realized that, given 𝑡􏷠 and 𝑘, they could rewrite Equation 6-13 in the form of
Equation 6-15.

(6-15) 𝑡􏷡􏷠 = 𝑡􏷡
⎛
⎜
⎝
1 − 𝑏

􏷡

ℎ􏷡
⎞
⎟
⎠
+ 4
𝑣􏷡 [𝑘

􏷡 − (ℎ􏷡 − 𝑏􏷡)]

Then, if they chose 𝑘􏷡 = ℎ􏷡 − 𝑏􏷡, the result would be Equation 6-16, which simplifies to
Equation 6-17.

(6-16) 𝑡􏷡􏷠 = 𝑡􏷡
𝑘􏷡

ℎ􏷡
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(6-17) 𝑡􏷠 = 𝑡
𝑘
ℎ

Thus, all DMO amounts to is a simple mapping from offset ℎ at time 𝑡 to offset 𝑘 at time
𝑡􏷠. Moreover, this mapping is entirely velocity independent. This means that DMO
and, consequently, DMO inversion can both be performed in a completely velocity
independent manner. Forel and Gardner also realized that this process can be carried
out by replacing each input trace with an ensemble of output traces having offsets
determined by 𝑘 through 𝑏 at time 𝑡􏷠.
Figure 6-9(a) shows an ensemble of replacement traces for DMO on the left and DMO
inverse on the right. As we might expect, what we see are smiles for the former and
frowns for the latter. Figure 6-9(b) shows what happens to a purely inline common-
midpoint gather after DMO is applied. Note that, after DMO, the source-receiver axis
is orthogonal to the input source receiver axis. If we apply DMO inverse to the DMO’d
data, the result would be to simply rotate back to the original orientation.

Figure 6-9. DMO in pieces

(a). DMO impulse response on the left and DMO
inverse on the right

(b). DMO is essentially a 90 degree rotation
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Figure 6-10 shows how to modify AMO (DMO followed by DMO inverse) to achieve an
output source-receiver orientation of any desired angle. DMO is first applied along the
output trace orientation indicated by the ℎ𝑂 vector in part (b). DMO inversion is then
applied orthogonally to this direction. This process transforms an input volume with
virtually random azimuths into one with a fixed azimuth and only four dimensions.

Figure 6-10. Arbitrary angle AMO

Figure 6-11 shows an AMO impulse response on the left and a full 3D volume on the
right. The input trace from the SEG/EAGE C3-NA synthetic data volume used for the
impulse response had an azimuth of -2 degrees and an offset of 1600 meters. All traces
from the SEG/EAGE C3-NA data were used to produce the 1000 meter offset volume on
the right. The azimuth of this volume was 45 degrees.

Figure 6-11. AMO impulse and 45 degree azimuth at 1000m offset.
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The left hand side of Figure 6-12 shows a 1000 meter offset slice through an AMO’d
volume processed to achieve zero degrees azimuth. The right hand side shows the same
line from a similarly processed volume at 45 degrees. Note the considerable differences
in reflector position even though the model is the same.

Figure 6-12. A comparison of zero degree and 45 degree azimuths.
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The top half of Figure 6-13 shows a fixed 15 degree azimuth line selected from a single
streamer marine acquisition from offshore Indonesia. Shots with mostly shorter offsets
are on the left, while those with mostly longer offsets are on the right. The bottom part
of this figure shows a selected set of shots from the 3D AMO processed data set. Note the
similarity of these data as well as that all offsets are now present in the common azimuth
line.

Figure 6-13. Real data AMO example
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Velocity Independent Prestack Time Imaging

Figure 6-14 shows various slices through the seismic response for a point reflector in a
purely constant velocity medium. The top left figure is the response due to a single point
reflector. Proceeding in a counterclockwise manner, we see a common-depth point slice,
a radial or common-angle slice, a common-time-slice, and finally in the upper right, a
common offset slice. In this constant velocity world, it should not be difficult to envision
a method for imaging each of these particular orientations of the data.

Figure 6-14. Point response in a constant velocity medium

Common-offset sections actually look like normal stacked seismic sections, but there is a
difference. In the near offset on the left side of Figure 6-15, the section closely resembles
a normal stack, while the far offset on the right appears to be a squeezed version of
the section on the right. Even though these sections are from the two dimensional
anisotropic model in the lower right hand corner, anisotropy is not really visible to the
naked eye. Moreover, traditional normal moveout correction, even though it supposedly
stretches the data to equivalent zero-offset time, will not ultimately produce anything
close to a true zero-offset stack.
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Figure 6-15. Near and far offsets

Figure 6-16 details an unusual methodology for imaging or migrating data in constant
velocity media. It combines what we have learned in the previous figures to allow us to
image the point source response while delaying the velocity analysis until the very end.

Figure 6-16. Dip independent prestack imaging
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The left hand side of this image essentially shows what happens when we apply DMO.
The top graphic shows the input data from a single point source. That is, it represents
two different common-offset slices superimposed on one another. The middle figure on
the left hand side shows the same two offset slices after DMO. Note that, in this case, the
two common-offset images differ only by moveout time.
In the bottom part of the left hand side, we see that, after DMO, any time slice appears to
be a circle. That being the case, we can image this circle to a point by simply migrating
it as in the previous figures. Once this is done, as indicated by the top figure on the
right, we will have reduced the point source response to a single CDP whose moveout
velocity provides the necessary information to image the point at its correct subsurface
location.
The completely velocity independent prestack imaging method that produced Figure 6-
17 delayed velocity analysis until the very end of the process. This means that the
velocities obtained from this approach are actually migrated velocities, and consequently
are measured almost vertically. The importance of this statement is that this set of
velocities are much more consistent with the assumptions made to ensure the accuracy
of the traditional Dix vertical inversion scheme.

Figure 6-17. Application of dip independent prestack imaging in the Gulf of
Mexico
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Double Downward Continuation—Common
Azimuth Migration

Among the several approaches to prestack imaging, common azimuth migration is one of
the fastest. While it may suffer from off-azimuth response problems, it produces usable
output at a speed that makes it a viable technique for velocity analysis and velocity
model construction.
Figure 6-18 shows a common azimuth migration. A common azimuth migration
parameterizes input data by CDP and offset. Since the data are assumed to have been
recorded with one and only one azimuth, the source and receiver locations can be
computed from the midpoint (or CDP) and offset. This means that the data are defined
by only four parameters: midpoint (2), offset (1), and time, and, as a consequence,
are four-dimensional. Normally, data sets with more than one azimuth are really five-
dimensional: source(2), receiver(2) and time (1).

Figure 6-18. Common azimuth downward continuation migration

The nice thing about common azimuth data is that they can be continued downward in
the same manner as poststack data. Even though the poststack data set has only three-
dimensions, the methodology of the two approaches is so similar that we can certainly
think of them as being the same.
The disadvantage of the common azimuth approach is that real world data is never
acquired in common azimuth form. Moreover, the approximations used to produce the
algorithm usually result in a methodology that cannot image steeply dipping events well.
Perhaps the saving grace of this algorithm lies in its speed. For full volume migrations, it
has the potential to be the fastest algorithm ever invented for prestack imaging.
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Again, as was the case for poststack data, common azimuth approaches image the data
one depth slice at a time. Figure 6-19 is just an illustration to emphasize that almost all
one-way methods image the data one depth or time slice at at time.

Figure 6-19. Common azimuth depth slice from a migration of the SEG/EAGE
C3-NA data set

The nice thing about common azimuth migration is that it reduces the complexity of
the input data set by one dimension. Normal 2D data is actually three-dimensional—it
is indexed by one space variable for the shot location, one for the receiver, and one
for time. In contrast, 3D data is characterized by being five dimensional, where each
shot location has at least two surface coordinates, each receiver also has two surface
coordinates, and, of course, there is one time dimension. Since shot, 𝑚+ ℎ/2, and receiver
locations, 𝑚 − ℎ/2, are a simple function of the midpoint coordinate vector, 𝑚, common
azimuth data has four dimensions, with two midpoint coordinates, one offset, and time.
As a result, downward continuation of data of this type is much simpler that downward
continuation of more typical five-dimensional 3D data sets.
However, common azimuth processes are not without problems. For example, the
approximations necessary to make the methodology efficient are known to break down
at 45 degrees. Furthermore, dip limits can be severe if the implementation does not
properly account for different velocities at source and receiver coordinates. Nevertheless,
for a large percentage of the subsurface, common azimuth migration is a useful, efficient
tool for velocity model construction on a densely-spaced grid.
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Aliasing is as much of an issue for common azimuth migration as it is for almost any
other type of wave-equation based method. Whether data is recorded at good or bad
spatial increments, aliasing must be considered and handled. For example, if it is based
on the formulas above, the acquisition 𝑑𝑥, 𝑑𝑦 and desired 𝑑𝑧 do not support a maximum
frequency consistent with the recording parameters, the output spacing can be adjusted
so that these frequencies will be imaged without aliasing. Normally, this consideration
is not an issue with Kirchhoff-based technologies, since implementations of this type
usually handle aliasing correctly without much user consideration. Because it is a
recursive process, one-way downward continuation must be performed so that the
output spacing precludes any aliasing at every depth step. This is particularly true at the
initial downward propagation, but must be maintained until the recorded frequency has
dropped below the point where the surface acquisition increments are satisfactory.
In addition to requiring proper spatial increments, common azimuth approaches require
input data that is properly sampled in offset. The input offset increment must be chosen
to ensure that offset dependent arrivals are not aliased.

Common Offset Kirchhoff Ray-Based Methods

Kirchhoff migrations have long been a staple of imaging technology. As a result, there
are many excellent implementations of this methodology. Almost all are so-called single
arrival approaches, whether in time or depth. Generally speaking, when the velocity
gradients are reasonable, single arrival methods have excellent capabilities and can
produce excellent images. On the other hand, when overburden velocity variations are
strong, Kirchhoff methods can have significant problems imaging below these variations.

Straight Ray Kirchhoff Prestack Time Migration

The process described in Figure 6-20 provides the basic schema for all single arrival
prestack Kirchhoff time and depth migrations.

Figure 6-20. Straight ray prestack Kirchhoff time migration.
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The process gives a simple velocity dependent recipe for computing a source to image-
point traveltime and an image-point to receiver traveltime for use in the migration. In
this prestack case, a closed form local RMS velocity formula produces the required times.
The sum of these two traveltimes is then used to select an amplitude from the trace with
this source and receiver. We then calculate a correction amplitude for this image point,
multiply it times the amplitude selected from the trace, and add the result to the output
image location. To avoid aliasing, it is normal to filter the trace using the usual aliasing
equation in Equation 6-18.

(6-18) 𝑓𝑚𝑎𝑥 =
𝑣𝑚𝑖𝑛

4 𝑑𝑥 cos 𝜃

Equation 6-18 is used to compute a dip dependent upper frequency to restrict the
frequency content of the trace prior to adding the extracted amplitude into the
corresponding output image point. The simplest version of this type of anti-aliasing pre-
computes several traces with decreasing frequency bands and then selects the desired
amplitude from the one most likely to avoid aliasing issues.

Curved Ray Kirchhoff Prestack Time Migration

The curved ray Kirchhoff prestack time migration algorithm shown in Figure 6-21 is
based solely on the curved ray formulas in Figure 4-19. Those formulas are used to
compute source to image point and image point to receiver traveltimes. Typically, the
required 𝑣(𝑧) velocity is selected at the image point, but it is clearly possible to select one
at the source and a different one at the receiver.

Figure 6-21. Curved-ray-prestack-time-Kirchhoff migration.
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Single Arrival Kirchhoff Depth Migration

As indicated in Figure 6-22, the only difference between various Kirchhoff prestack
time migrations and Kirchhoff depth migrations lies in how the required traveltimes are
computed.

Figure 6-22. Single-arrival-Kirchhoff-depth migraiton

Raytracing is by far the dominant method for calculating these traveltimes. In this
figure, rays are traced from the source and the receiver to the output image point.
The traveltime sum, along with appropriate amplitude corrections, is then used to
sum the trace amplitude into the output image point. On the surface, this process
requires that rays be traced from each source and receiver to each output image point.
Computing a traveltime volume for each and every source and receiver location can be
very expensive, so as shown in Figure 6-23, most modern Kirchhoff implementations
precompute traveltimes on a regular grid.

Figure 6-23. Raytracing issues for all 3D raytrace based imaging methods

It is possible that more than one ray will arrive at any given image point during
the calculation. Since keeping track of every such arrival is an extremely complex
bookkeeping problem, it usually easier to choose a single arrival, but the selection of the
arrival best serving the migration process is not always easy. Typical arrivals of this type
are maximum energy, minimum distance, or minimum velocity.

192 Modeling, Migration and Velocity Analysis



Panorama Technologies Common Offset Kirchhoff Ray-Based Methods

Minimum velocity arrivals avoid headwaves caused by proximity to salt or other high
velocity structures. Thus, in areas with strong lateral velocity variations, such as salt
regimes, the minimum velocity methodology is considered to be optimum. In such
cases, the minimum velocity ray is defined to be that ray for which the sum of all
velocities along the ray has the smallest value. Interpolation is used to compute the
desired traveltime at each source, receiver, and image point, thus reducing the overall
computation costs and generally improving the speed of the migration step.
Clearly, the accuracy of the migration is controlled by how well the implementation
handles both the traveltime computations and the interpolation of the traveltime
volumes.

Multiple Arrival Kirchhoff Migration

Energy from a seismic source can reach any given subsurface point in more than one
way. Figure 6-24 characterizes this concept graphically in terms of rays. Each ray is
uniquely determined by either its take-off angle or by its arrival (incidence) angle, and
there is no restriction on how many rays from a fixed source location can reach any
given subsurface point. To properly implement an algorithm of this type we must, at
least in theory, calculate an amplitude and a phase-shift for each arrival to correct the
selected amplitude from the current input trace.

Figure 6-24. Multiple-arrival-prestack-Kirchhoff-depth migration

Multi-arrival Kirchhoff migration is very difficult to implement since it presents a
rather complex bookkeeping problem that apparently has no efficient solution. This
is unfortunate because multi-arrival Kirchhoff migration has the greatest potential for
providing an algorithm with a near optimum percentage of the features of full two-way
imaging. Based on empirical observations from the myriad implementations of its single-
arrival brother, it would have super dip response, excellent amplitude handling, as well
as the ability to include turning rays and diffractions.
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Kirchhoff Elastic Depth Migration

The separation between acoustic and elastic Kirchhoff migration algorithms is solely
determined by traveltime calculations. The migration step is not dependent on
how the traveltime volumes are computed. If the traveltime volumes are based on
acoustic equations, the result is an acoustic migration. If they are based on anisotropic
calculations, the result is an anisotropic migration. If the source traveltimes are based on
compressional velocities and the receiver traveltimes are based on shear velocities, the
resulting algorithm is a converted wave migration.

Single Arrival Kirchhoff Depth Migration Summary

As the current work-horse of seismic depth migration and migration velocity analysis,
single arrival Kirchhoff migration has proven to have excellent dip response, good
amplitude response, and has shown some ability to image turning ray energy. Its great
flexibility as a velocity analysis tool suggests that it will be around for some time to
come. Its single biggest drawback is that it is very sensitive to strong lateral velocity
variations, particularly below salt structures. This is very likely due to the use of a single
arrival.
Raytrace-based migrations rely heavily on the quality and accuracy of their traveltime
generators. As a high-frequency approximation to forward wave-field propagation,
raytracing can be very sensitive to even relatively minor velocity variations. Reducing
this sensitivity usually means that the input velocity field must be smoothed before
calculating traveltime tables. In some cases, this is not an issue, but when the velocity
variation is strong, significant depth errors may result. The raytrace module must
compute both the traveltime to a given image point and any and all amplitude correction
factors. If the raytracer is inaccurate, so is the output image, and no raytracer can
recover from an incorrect velocity field. Likewise, no velocity field can be recovered
from an incorrect raytracer.
When using Kirchhoff style methods, it is extremely important to understand how, when
and where traveltime volumes are computed. If the migration algorithm is based only
on downward, single arrival raytracing, then each volume must be sampled sufficiently
well in all directions to ensure proper accuracy. In some Kirchhoff implementations,
traveltime generators are based on finite difference solutions to the basic Eikonal
equation that governs ray propagation. Because Eikonal-based methods are generally
only able to calculate first arrivals, they are prone to producing spurious results in
complex geological models.
Raytrace methods facilitate the calculation of multiple arrivals, and the selection of the
most appropriate arrival better serves the migration process. Raytracing is the preferred
traveltime generation method.
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The utilization of a single arrival in Kirchhoff depth migration technology is one of the
chief reasons these methods have difficulty imaging below complex structures. When we
use all of the possible arrivals, as shown in Figure 6-24, we can achieve a superior result
to what is achieved with the single arrival approach. While multiple arrivals complicate
the migration algorithm and generally make it more computationally costly, the benefit
of including more arrivals usually outweighs the increased cost. However, because it is
so difficult to solve the general bookkeeping problem involved in making a multi-arrival
Kirchhoff practical, this approach is seldom used.

Beam and Plane Wave Migrations

Beam and plane wave migrations can be divided into the following cases:
• pure plane wave
• beam stack
• delayed shot
• Gaussian beam

Pure Plane Wave Migration

The migration algorithms in the previous section are all based on downward
continuation concepts. Conceptually, each such approach either uses the reversed
wavefield as a source term and models the response in reverse, or it uses the reversed
wavefield to downward continue the recorded data and produce an image at each depth
slice.
The next two algorithms are based on concepts that use surface emergence angles to
develop algorithms that produce similar images although they use widely different
techniques.
We can also do the decomposition on common-offset sections shown in Figure 6-25. This
is similar to slant stacking a stack. In this case, the section is a synthetic at 1000 meters
offset, but for all intents and purposes, it looks just like a stacked section. Note that
the short black dip element carries the sum of the information necessary to figure out
its final position (the red dip element). A two-point raytracer can figure this out quite
easily.
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Figure 6-25. Fixed offset hand migration

Figure 6-26 illustrates the process for one of the fastest migrations possible. Given
the local dip information from the previous figure, a two-point raytracer gives us the
position of the dip element. All we need is a bit of the local wavelet to place at the
center of the image zone rectangle.

Figure 6-26. Ultra fast beam migration
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Beam Stack Migration

We get a bit more than just the emergence angles when we find the local dip element
shown in Figure 6-27. In this case, the local dip is the sum of the source traveltime
gradient and the receiver gradients. Since we know these two values when we calculate
the traveltimes, we can construct another beam style migration element through a
diffraction stack.

Figure 6-27. Using local dip estimates

Converting a Kirchhoff method to a beam or slant stack approach requires that we
expand traveltime around a central source (or receiver) location in a Taylor series. In
two-dimensions, the proper formula is given by Equation 6-19.
(6-19) 𝜏􏷟 + 𝑝𝑥𝑠 • (𝑥 = 𝑥𝑠)

Here, 𝑝𝑥𝑠 actually turns out to be the derivative (gradient in 3D) of the traveltime withrespect to source position; that is,

(6-20) 𝑝𝑥𝑠 =
Δ𝜏𝑠
Δ𝑥𝑠

Since 𝑝𝑥𝑠 can be calculated during the raytracing part of the Kirchhoff method, there islittle added computational cost. On the other hand, since the entire slant stack bundle
replaces many traces in the migration process, Kirchhoff-beam-stack methods can be
significantly more efficient than their traditional straight-forward implementations.
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Figure 6-28. Generalized Traveltimes and Beam-Stack Kirchhoff Migration

(a). Computing traveltimes from centered traveltimes

(b). Schematic of a traveltime bundle
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Delayed Shot Migration

Figure 6-29 illustrates the basic concepts underlying plane-wave or common-emergence
angle calculations for source and receiver gather plane wave decomposition. The first
step is to decompose the data into plane wave sections. In the case of a synthetic source,
we simply decompose the source along the normal to the 𝑝 value. For receiver gathers,
holding 𝑝 fixed produces a p gather or p-section. Such sections are obtained through
a simple slant stack of the data around some central point. To propagate a source,
we simply do the propagation along the common angle. To back propagate a receiver
decomposition, we simply back-propagate each 𝑝. Depending on which algorithm we
choose, each common p-section can be migrated individually. After migration, we only
need to sum the results to produce a final migrated result.

Figure 6-29. Delayed shot and receiver migration

(a). Delaying shots or receivers to synthesize a
plane wave source

(b). Shot and receiver delay migration
principles

Chapter 6. Prestack Time and Depth Migration 199



Beam and Plane Wave Migrations Panorama Technologies

Figure 6-30 illustrates that each p-value in the slant stack produces a common emergence
section that can be migrated in much the same manner as a common-offset stack, or
even, conceptually, a zero-offset stack.

Figure 6-30. A common p section

The utilization of slant-stacked data has many advantages and many draw-backs. An
important drawback is the need to use a large number of p-values to adequately cover
the entire impulse or operator response. Typically, theory requires us to use hundreds of
such values, but most implementations are efficient only if the process uses a few values.

200 Modeling, Migration and Velocity Analysis



Panorama Technologies Beam and Plane Wave Migrations

Gaussian Beam Migration

Figure 6-31(a) shows how a forward propagated shot can be constructed through the use
of what are called Gaussian beams. Computation of each such beam requires that we
first shoot a central ray. The velocity function, 𝑣(𝑠), selected along the ray path is then
used to propagate source energy forward along this ray. We can use almost any kind
of propagator for this process, but usually something like a phase shift is the algorithm
of choice. During the back-propagation, energy is allowed to expand from the central
ray, and is controlled predominantly by a Gaussian bell-style weight, with the local size
depending on the propagation distance and local sound speeds. Because each central ray
is defined by its take-off angle, and each such angle is in turn a plane wave direction, we
can say that Gaussian beam modeling is really a plane wave modeler.

Figure 6-31. Shot modeling and prestack migration via Gaussian beams

(a). Gaussian beam forward propagation (b). Prestack Gaussian Beam migration

Figure 6-31(b) shows how to use the concepts discussed in part (a) to construct a
Gaussian beam approach to prestack migration. Note that Gaussian weighting is applied
to each p-value in the slant stack of a bundle of local traces.
Gaussian beam migration has many positives, including that it does not suffer from the
single arrival problems associated with traditional Kirchhoff migrations, and it can be
implemented in a manner that correctly handles amplitudes and even multiple arrivals.
Consequently, Gaussian beam methodologies tend to produce images that are extremely
close to full-wave equation methods. In fact, they are much closer to two-way methods
than one-way approximations to the wave equation.
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Algorithmic Differences

Figure 6-32 shows the basic differences between different migration algorithm classes.

Figure 6-32. Prestack migration differences

The top left part of the figure is a schematic of a typical curved-ray time migration. Note
that this approach uses a single arrival and also uses a single 𝑣(𝑧) velocity for each output
image point. This means is that the curved ray time migration is really a 𝑣(𝑧) depth
migration that uses a completely different model for each and every output point.
The top right part of Figure 6-32 conceptualizes a single arrival Kirchhoff depth
migration. Here, the single arrival is chosen by shooting rays in a fully three-dimensional
Earth model. In this case, the migration is a truly three-dimensional process. In complex
media, the forced choice of a single arrival increases this method’s sensitivity to rapid
and strong velocity variation. It is not surprising that single arrival Kirchhoff depth
migration has considerable difficulty imaging below salt structures. Nevertheless, the
flexibility of this approach means that it will remain the workhorse of migration velocity
analysis for Earth model estimation.
The bottom left part of the figure shows a characteristic multiple arrival migration
methodology. Among the techniques that achieve this goal are one-way FKX wave-
equation algorithms and multi-arrival Kirchhoff methods that do not allow turning rays.
Because turning rays have been eliminated, the methods envisioned in this figure cannot
image beyond 90 degrees.
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The bottom right part of Figure 6-32 illustrates a full, or at least nearly full, two-way
methodology. In this setting, waves described by all incidence and reflections angles
are imaged. The methods that have this kind of capability include full multiple-arrival
Kirchhoff algorithms, Gaussian beam methods, and, of course, full finite difference
reverse time migration.
To further understand migration differences, Figure 6-33 shows impulse responses from
two different algorithms at three different trace locations in the velocity model. The
vertical black lines mark the position of synthetic traces from the data set generated
over the model. The top row of impulse responses are based on one-way FKX algorithms
while the bottom row are based on a single arrival Kirchhoff method.

Figure 6-33. Comparison of impulse responses from a complex salt structure
model

(a). Velocity Model (b). Impulse Responses

Because the left hand impulse response column represents a trace from that side of the
model, the lack of strong lateral velocity variation results in almost identical wave-
equation and Kirchhoff responses.
In contrast, the middle column represents a trace with a midpoint directly over the
salt structure in the center of the model. Note that while the Kirchhoff amplitudes are
comparable to those of the response in the top row, the tremendous number of multiple
arrivals and phase changes are quite evident. It is possible to program the Kirchhoff
response to almost exactly match the wave-equation response, but the effect is difficult
to achieve.
Since the trace used to compute the right hand column is also out of the strong
lateral velocity zone, its affect on arrivals is not as noticeable as the center column.
Nevertheless, the need to compute a large number of multiple arrivals is still quite clear.
Figure 6-34 shows the extremely complicated impulse of both the two-way and one-
way methods, and demonstrates the need to use highly accurate algorithms in complex
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geological media. Many people would argue that the smooth structure of the Kirchhoff
impulse response on the right is the correct approach. However, the best results are
produced using the full two-way method on the left. In some cases, the most pleasing
image to the eye is not the best approach to producing a full image.

Figure 6-34. A simple comparison of Kirchhoff, one-way and two-way impulse
responses over the SEG/EAGE AA′ data set.
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Chapter7
Prestack Migration Examples

This chapter is devoted to assessing the quality and usability of a wide variety of
prestack imaging algorithms. Visual side-by-side comparisons provide ample empirical
evidence to conclude that the more accurate the algorithm, the wider the aperture,
and the more careful the application, the better the result. Ultimately, we will argue
that the full two-way method is by far the best at providing optimum imaging. When
computational expense is not an issue, this should definitely be the method of choice.
The images in this chapter are self-explanatory and require little or no real attention to
visual detail. Because they are so small, it is better to see them on the screen.
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Common Azimuth on the SEG/EAGE C3-NA
Synthetic

Figure 7-1, after Biondi et al., represents a direct comparison between a Kirchhoff
migration and a full one-way common azimuth migration.

Figure 7-1. Common azimuth versus a single arrival Kirchhoff migration of the
SEG/EAGE C3-NA data volume.
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Kirchhoff versus One-Way on a Gulf of Mexico 2D
Salt Synthetic

This short section looks at a major reason we should use highly accurate imaging
techniques. It compares a one-way phase screen to a maximum amplitude Kirchhoff
method. Improvements at both the salt-sediment interface and below the salt provide
clear evidence of the superiority of the more accurate one-way technique.
A series of widely spaced shots were synthesized over the model shown in the upper
right corners of both halves of Figure 7-2. Receivers for each shot were spread across
the entire model surface. The one-way technique clearly does a better job overall and is
much better at the salt-sediment interface and in the sub salt section of the model.

Figure 7-2. A comparison of Kirchhoff and one-way migrations Algorithms.

(a). Model and prestack Kirchhoff migration (b). Model and one-way phase screen
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A North Sea Sill Synthetic

The model in Figure 7-3 was designed by Dr. Rob Hardy at Trinity University in Dublin,
Ireland. The synthetic data were generated using Panorama Technologies advanced finite
difference modeling technology. All images in this figure were based on the same input
data. The Kirchhoff image was the result of an application of Seismic Unix’s Kirchhoff
migration from the Colorado School of Mines.

Figure 7-3. Volcanic Sills Model and Migrated images

(a). Volcanic Sills Model (b). SU Kirchhoff of the Sills Data

(c). One-way FKX image of the Sills
Data

(d). Two-way XT image of the Sills
Data
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Marmousi Case Study

The Marmousi data set was generated under the direction of Roloff Versteeg (1990),
while at the Institute de Francis du Petrol (IFP) in Paris, France. The velocity or Earth
model is based on an actual prospect from offshore Western Africa. The Marmousi
data have proven to be a gold mine for both development of imaging algorithms and
for showing practitioners of the art that the world is not as simple as they originally
thought. Here we see that problems with Kirchhoff techniques are not strictly limited to
Gulf of Mexico style salt structures.
The various parts of Figure 7-4 are self-explanatory. The only conclusion we can reach
is that multi-arrival methods are absolutely necessary to ensure optimum imaging. In
the author’s mind, the full two-way image in the lower right corner (Figure 7-4(f))
is superior to all the others, but at least three of the other methodologies would give
satisfactory results for exploration purposes.
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Figure 7-4. A comparison of prestack algorithms on the Marmousi data set.

(a). The Marmousi velocity model
(b). Multi arrival Kirchhoff after Sam Gray

Veritas

(c). Gaussian Beam after Hill 2001 (d). Single arrival Kirchhoff migration

(e). One-way phase screen migration (f). Full two-way finite difference migration
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An Imaging Note and the BP 2.5 Dimensional Data

Before providing some comparisons of one- and two-way migrations on complex data
sets, it is worth discussing imaging data sets that, because of severe illumination or
surface issues, might have wide ranging differences in both source generated and
receiver suppressed energy levels. This issue was brought to light by several researchers
at AMOCO and later BP. J. T. Etgen, Carl Regone and colleagues generated the model,
which, when migrated, produced such a wide range of output reflection strengths that
just displaying it was difficult.
Figure 7-5 shows how this reflection strength disparage can be overcome by a careful
compensation for illumination. The bottom part of this figure shows a straightforward
migration of the original input data. The middle part represents the illumination in space
and depth. Simply dividing by this quantity produces the image at the top of Figure 7-5.
Note that this process is not equivalent to an automatic gain control. It is actually based
on being able to correctly handle energy differences specified by the Earth model and
correct the output image for lateral and vertical differences.
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Figure 7-5. Using illumination corrections to properly gain imaged data.

212 Modeling, Migration and Velocity Analysis



Panorama Technologies BP 2.5 D Data

BP 2.5 D Data

Each graphic in Figure 7-6 represents application of either a one-way or a two-way
method to the original BP 2.5D data set. Parts (a) and (b) show an image of the velocity
model overlaid on a one-way image of the raw input data along with the one-way image
without the overlay. Parts (c) and (d) show the need to properly account for differences
in both illumination and energy spreading losses. Parts (e) and (f) show that use of a
well implemented imaging condition can produce dramatic results.

Figure 7-6. Imaging with proper illumination correction.

(a). One-way BP 2.5D data with
velocity overlay

(b). Two-way BP 2.5D data without
illumination

(c). Two-way BP 2.5D data with
normal imaging

(d). One-way BP 2.5Dl data with
overlay

(e). Two-way BP 2.5D data with
illumination

(f). Two-way BP 2.5D with
optimum imaging

Chapter 7. Prestack Migration Examples 213



BP 2004 Salt Structure Data Panorama Technologies

BP 2004 Salt Structure Data

Figure 7-7(a) is a graphic of the velocity model for the Earth model used to generate
realistic data for evaluation of imaging techniques. This model is very complex, with
lateral velocity ratios close to 2:1 at many depth levels. Part (b) of this figure compares
two partial images. The image on the left in part (b) was obtained from a one-way
method, while the image on the right is a two-way image using exactly the same
parameters and input data. Clearly, the two-way method images much more of the
subsurface than does the one-way method. This is very likely because the two-way
method produces a much more accurate impulse response at all angles. Part (c) shows
that the two-way method can provide an excellent response even without multiple
suppression.

Figure 7-7. Migration of the complex BP2004 data.

(a). BP 2004 Model after F. Billette

(b). One-way versus two-way on the same
input data

(c). Full two-way migration on the BP 2004
data volume
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SEG AA′ Data Set

The SEG AA′ data set was originally a test 2D data set shot over a selected line from
the full SEG/EAGE model. It has been said (personal communication from Sam Gray)
that almost any algorithm can be made to image this data set reasonably well. Here, we
simply compare a one-way split step method to a more accurate full two-way method.
Figure 7-8(a) is the original SEG AA′ velocity model. Figure 7-8(b) is an image of the
prestack data originally shot over this model at AMOCO production before it became
part of BP. Part (b) is a two-way image of this data, and is clearly better than the one-
way result.

Figure 7-8. SEG AA′ model and associate one and two-way images.

(a). The SEG AA′ velocity model

(b). One-way image of the AA′ data (c). Two-way image of the AA′ data
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Migration from Topography

The traditional approach to handling data taken in areas of extreme (or even modest)
topography is to statically correct the data to some datum, and then migrate as if the
source and receivers were on the usually absolutely flat plane. It is quite easy to perform
the migration directly from the topography. The major difficulty is not in making the
algorithm handle the topography, but, instead, the difficulty arises in having accurate
topographic data available and in being able to estimate an accurate near surface
velocity field. What this section shows is that migrating from topography is not an issue.
Migration from topography requires the exact specification of the location and elevation
of each and every source and receiver in the acquisition. Even though this information
is routinely available, it is frequently not stored concomitant with the data, or it is lost
after static corrections. Implementation of migration from topography requires only that
wavefields be generated at the source or back-propagated from the receiver locations
and elevations. Part (a) of Figure 7-9 shows a relatively simple model with relatively
complex topography. Parts (b) and (c) show Kirchhoff and two-way images of these data.
Visual comparison suggests that, again, the two-way approach is vastly superior to the
Kirchhoff method.
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Figure 7-9. Migration from topography.

(a). The BP (AMOCO) Canadian foothills
topographic model

(b). Kirchhoff migration of the BP tomographic
data

(c). Full wavefield migration of the BP
tomographic data
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The SMAART JV Sigsbee Model

The SMAART JV (Subsalt Multiples Attenuation And Reduction Team Joint Venture)
was an industry-sponsored joint venture focused on designing realistic Earth models
and acquiring data over them to test the then current methodologies for imaging and
multiple suppression. The first of the two images in Figure 7-10 shows the model used
to synthesize the data as well as several images of the synthetic data. What is most
interesting is the excellent amplitude response of the two-way algorithm.
Figure 7-10 shows the Sigsbee model in part (a), a Kirchhoff vertically varying gained
image in part (b), a one-way image with no gain in part (c), and a full illumination
corrected two-way image in part (d). The two-way image shows outstanding amplitude
restoration and, in fact, when compared to the model in part (a), provides an excellent
image proportional to reflectivity.
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Figure 7-10. Sigsbee model and images from the SMAART Joint Venture project

(a). SMAART JV Sigsbee salt model (b). Kirchhoff image (Sam Gray et. al)

(c). One-way image (d). Two-way image
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The zoomed images in Figure 7-11 that came from the original images in Figure 7-10
confirm the much higher quality imaging capabilities of two-way methodology.

Figure 7-11. Zoomed images from Figure 7-10

(a). Zoom comparison of one-way on the left and two-way on the right

(b). Zoom comparison of one-way on the left and two-way on the right
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SMAART JV Pluto Data Set

In addition to designing and synthesizing data over a complex salt model, the SMAART
JV data sets also produce data over a model designed specifically to test surface-related
multiple elimination (SRME) algorithms. The Pluto data set is somewhat unusual
because it contains a full set of zero-offset traces.
The images in Figure 7-12 visually quantify the impact of multiple energy on the higher
technology migration algorithms. Part (a) provides a glimpse of the impact of multiples
on a one-way phase screen migration of the Pluto data. Part (b) shows improved results
when the multiples have been suppressed by SRME, but the two-way image in (c) is a
better image still, even though it was produced with only 50% of the input data.
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Figure 7-12. SMAART JV Pluto data set images.

(a). One-way migration with no SRME (b). One-way migration with SRME

(c). Two-way image of 50% of the input
data
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SEG/EAGE C3-NA Data Imaging

In this section, we consider the question of why imaging below salt for the C3-NA data
set is so difficult
The two-way migration of the SEG/EAGE salt data represented in Figure 7-13(a) and (b)
is quite good and compares favorably with the one-way migration in the left hand side of
Figure 7-13(c). However, it is quite clear that, in spite of the excellent imaging, neither
method provides a satisfactory image below salt.

Figure 7-13. SEG/EAGE C3-NA salt images

(a). A 3D two-way image (b). A 3D two-way image

(c). A comparison one-way and two-way on Line 289
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Figure 7-14 shows the result of proper data acquisition. The model in part (a) was used
to synthesize densely spaced shots with apertures that covered the entire model. These
data were then migrated to produce the image in parts (b) and (c). The graphic in part
(b) of this figure is an excellent image of the sub salt reflectors. The same is true for the
two-way image in part (c). The only possible conclusion is that proper acquisition is
required for optimum imaging.

Figure 7-14. Imaging below salt

(a). A 2D line extraction from the 3D
SEG/EAGE salt model

(b). One-way image of a 2D acquisition over
the model in (a)

(c). Two-way image of a 2D acquisition over
the model in (b)
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Anisotropic Earth Models

This section provides a simple example of how even simple anisotropic migrations can
bring improved imaging to the migration arena. The Earth model in this section is based
on an actual exploration problem that arose when drilling revealed a structure that
was not apparent in the original imaging exercise. The vertical or well velocity of the
highlighted turtle-like structure in the center of the model does not change. It is only the
horizontal or NMO velocity that indicates its presence.
Figure 7-15 is an example of a simple 2D anisotropic Earth model. Shown are the
vertical or well velocity (top left), the NMO velocity (top right), Thomsen’s parameter 𝛿
(bottom left), and Thomsen’s parameter 𝜂 (bottom right).

Figure 7-15. An anisotropic Earth Model.

Although this figure contains four graphics, such models can be represented by only
three parametric volumes. Given a vertical velocity, 𝑉𝑣, and Thomsen’s parameters, 𝛿
and 𝜀, we can express any of the others by suitable rearrangement of Equation 7-1 and
Equation 7-2.

(7-1) 𝑉𝑁𝑀𝑂 = 𝑉𝑣√1 + 2𝛿

(7-2) 𝜂 = 𝜀 − 𝛿
√1 + 2𝛿

From a practical perspective, we usually estimate 𝑉𝑁𝑀𝑂 using what has become
traditional Kirchhoff based migration velocity analysis.
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Since

(7-3) 𝛿 = .5𝑉𝑁𝑀𝑂𝑉𝑣
− .5

it is clear that 𝛿 can be estimated through a simple combination of a well velocity and
a velocity volume estimated through the usual migration velocity analysis process.
Unfortunately, the same cannot be said for 𝜀.
Figure 7-16 shows a set of images from several experiments to determine the extent to
which anisotropic imaging might be of value.

Figure 7-16. Isotropic versus Anisotropic Imaging

(a). Isotropic with vertical velocity (left) and
NMO (right) (b). Zoom of (a)

(c). Shot versus Eikonal
(d). Shot (left) versus Anisotropic Kirchhoff

(right)

(e). Zoom of (d)
(f). Anisotropic (left) versus Isotropic (right)

CDPs
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For this purpose, the model in Figure 7-15 was used to generate a series of shots.
Figures 7-16(a) through (g) are various comparisons using different combinations of
the underlying Earth model derived from that in Figure 7-15. Figure 7-16(a) and (b)
show the results of using either the well velocity or the NMO velocity alone. The turtle
back structure in these figures is essentially invisible so there is no reason to suspect its
existence. While use of the vertical velocity does produce reasonable depth conversion
when the reflecting horizon is relatively flat, steeply dipping events are either not
imaged or are misplaced. Use of the NMO velocity tends to get steeply dipping events in
their proper place, but does a poor job of depth conversion.
As shown in Figures 7-16(c) and (d), the issue changes quite quickly when an isotropic
shot using the vertical velocity, or a full Kirchhoff anisotropic shot migration is applied.
Now, the turtle back structure is clearly visible in both images, and depth conversion is
quite good. However, while the shot migration is excellent, several of the steeply dipping
events are still misplaced.
Figure 7-16(e) compares isotropic shot and Kirchhoff migrations using the vertical
velocity. There is no question that the shot migration is worth the effort, but neither of
these migrations accurately image steeply dipping events.
Figure 7-16(f) shows why anisotropic imaging is worth the effort. The left hand side of
(f) shows anisotropically imaged CDP’s, while the right hand side shows isotropically
imaged CDP’s. The middle image is just a representation of the location of the CDP’s at
the top of the turtle-like structure. The greater flatness, along with improved amplitude
response of the anisotropic CDP’s, is clear evidence of the need to utilize anisotropic
methods when available.
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Chapter8
Data Acquisition

This chapter describes the principal ways in which data acquisition affects the seismic
data processing effort. This includes information about array effects, aperture, aliasing,
and the physical arrangement of the acquisition methods themselves.
The most frequently asked question about seismic data acquisition may be about the
optimum approach to acquire the data. Fundamentally, this is a question about the
geometry and sampling rate of the receiver array, but it easily expands to include
what source we should use, what microphones we should employ, whether or not we
should use geophone sub-arrays, how big our aperture should be, and, finally, what
temporal and spatial sampling rates we should select. In the spatial sense, we have
always acquired seismic data digitally. We never had continuous (analog) sampling in
space; analog data was only acquired in time.
The answers to these questions are mathematically and physically clear. For each
source, the receiver array should consist of point receivers (no arrays) densely sampled
over a wide aperture array encompassing a large square area. The source, however
it is formed, should be a point source (no arrays) generating energy uniformly in all
directions. For maximum benefit, there should be full source-receiver reciprocity; that
is, for each receiver position, there should be a source, and for each source there should
be a receiver. Hopefully, this chapter will make the reason for these statements clear.
Unfortunately, there are many reasons why the mathematics and physics are almost
always ignored—primarily, economics and practicality trump correctness. Furthermore,
faced with budget limitations in an era when oil was relatively easy to find, little
or no consideration was given to the underlying mathematical assumptions. Many
geophysicists assumed that mathematics, including the wave equation, did not apply
to the seismic acquisition process. Arrays were designed to control perceived noise,
but frequently depressed the dip response. Fancy acquisition geometries were designed
to reduce costs, but resulted in data sets that could not image geologic objectives.
Illumination studies were conducted in an attempt to determine the impact of any given
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acquisition style, but, because they were often based on one-way equations or rays, the
studies had no real impact on the solution—such studies can be fairly meaningless since
complicated waveforms exist in even relatively simple geologic environments.
In contrast, mathematics does not lie. Mathematics, physics and a tremendous amount of
empirical evidence suggests that imaging is a complex process almost totally controlled
by the degree to which mathematical assumptions are honored. While we will not go
into the mathematics in detail, we hope to provide a reasonable clarification of why
we should acquire data in a precise, mathematically-correct manner. We will show that
acquisition schemes can and should be modified to meet implicit assumptions.

Array Effects

Instead of recording single, non-overlapping shots into straight-line arrays, acquisition
became one in which each shot was recorded by a line of receivers laid out on either
side of the central shot. When receivers are laid out on only one side of a source, the
resulting acquisition is said to be single ended. Figure 8-1 shows a typical single-ended
acquisition, where a modern land vibrator provides the energy source causing the
subsurface wavefield and its reflection. Receiver arrays record the response.

Figure 8-1. Schematic of typical multi-fold, single-end seismic recording process

The bottom part of this figure shows how receiver arrays can be arranged and summed
to produce a single trace. The output of this sub-array forces us to recognize that each
trace can be affected by the array response. Although such arrays were supposed to
reduce noise when it was not economically feasible to record the full output at each
location, the mathematics says we should record and image using all receivers.

230 Modeling, Migration and Velocity Analysis



Panorama Technologies Array Effects

Array effects are rarely considered as part of the overall acquisition-data processing-
imaging methodologies. In fact, the underlying mathematics is based on the assumption
that each receiver is a so-called point receiver, but this assumption is wrong when an
array is involved. Figure 8-2 demonstrates the smearing that arrays cause. The three
images show the effect of recording every trace, a group of 8 traces, and a group of 16
traces. Note the considerable blurring caused by the mixing. While it appears to improve
continuity and reduce noise, the net effect tends to be unwanted dip reduction.

Figure 8-2. The effect of seismic arrays.

Among other things, smearing can reduce the dip response of the recording system
and thereby seriously decrease the quality of the ultimate image. Although it seems
like a good idea to use arrays, and, when steep dips are not an issue, it seems to make
sense, that is never really the case. The use of arrays is a fundamental violation of the
mathematical assumptions in all cases. Today, it is probably possible to record all the
receivers. The affect of any given array can be emulated in the processing stage, so
applying it in the field seems to be unnecessary and it is perhaps a big mistake.
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Aperture

Figure 8-3 (courtesy of BP) provides an example of the kind of Earth model that you
might see in the Gulf of Mexico. This model represents a typical salt imaging problem.
Given that this model is a reasonably accurate representation of the subsurface, several
facts are clear:

• every conceivable type of wave propagation will occur;
• since sea level represents a free-surface, every type of multiple will be evident;
• proper imaging will require that data acquisition be performed with a sufficiently
wide aperture to capture a sufficient set of reflectors.

Figure 8-3. A complex model for data synthesis. Model courtesy BP, Modeling
movie courtesy Panorama Technologies.

What modeling says is that producing an optimum image requires long offsets, long
recording times, and small surface increments. What this means in three-dimensions
is that we must use dense areal arrays as opposed to narrow-azimuth towed streamers.
Another issue that is not fully appreciated is the importance of low frequencies. Full
appreciation of this statement will become clear through the rest of the book.
Because it is from a Gulf of Mexico salt setting, many people conclude that the example
represented by Figure 8-3 is of little value in a more worldly view of exploration. They
say this kind of problem is simple to solve, and so should not be of much interest in
the larger scheme of things. As we will see, this is far from the case. The salt-sediment
contrast is on the order of 1.5 to 1, and a contrast this large is extremely difficult to
handle for many of approximations used to produce imaging algorithms.
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Figure 8-4 provides an example of the kind of complex geology we find on land. This
perceived Oklahoma subsurface model from an over-thrust area in the southwestern part
of the state faithfully represents a granitic overthrust in a very complex geologic setting.
Once again, modeling tells us that to properly image subsurface structure, it is absolutely
necessary to acquire long offsets and times. Thus, in both land and marine, satisfying
mathematical assumptions means that acquisition arrays must be composed of point
receivers, they must be areal in extent, and they must be densely sampled.

Figure 8-4. A complex model for data synthesis. Model courtesy Chesapeake
Energy, Modeling movie courtesy Panorama Technologies.

The rocks are hard, the near surface velocity is highly variable, and it is not unrealistic to
assume that the true Earth model should really include anisotropy. Again, all waveforms
are present in the simulation, and unraveling them requires that, to the extent possible,
all waveforms be used in the imaging.
A big difference between imaging land and marine data is the lack of water cover for
land data. When water is present, it is relatively easy to figure out what the near surface
propagation parameters should be since it is not necessary to rely on the recorded data
to determine the velocity of water. When water is not present, we must estimate the
near surface velocity structure (compressional and shear) from the data itself, but this
is very difficult to do because the number of traces that can be used to do this is highly
restricted by the acquisition parameters. Sufficient offset is seldom available to do even
simple semblance-based picking. What modern methods need is data that are fit for
purpose; data must contain the information necessary to permit accurate estimation of
the Earth model.
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Aliasing

Aliasing happens when the frequency of repetition is too fast for the true nature of
the repetition to be recognized. For example, everyone who has ever watched an old
American Western movie has seen wagon wheels, maybe like those in Figure 8-5, spin
diametrically opposed to the direction of travel (backwards). This occurs because the
thirty-frame per second sampling rate of the movie camera is incapable of resolving the
faster rate of the wheel spin. The net result is that the wheel appears to spin at a slower
rate in the wrong (backwards) direction.

Figure 8-5. Wheels alias when in motion.

For our purposes, spatial aliasing in seismic exploration makes it impossible to correctly
distinguish and image dipping events at their true position and angle. Many people
argue that the mathematics of sampling is incorrect because they believe that if the
human eye can recognize the correct pattern, the more mathematical migration
algorithms should also be able to do so. But our brains make the event appear
continuous, and handles it from there, while discrete mathematics cannot do this. The
mathematics of discrete migration algorithms make strong demands on what kind of data
they can handle because they cannot make the data continuous before they process it.
Consequently, both acquisition design and the imaging algorithm must take aliasing into
account. In some cases, the algorithm can be designed to handle any aliasing problem
or issue automatically and directly. However, when this is not the case, aliasing must
be avoided during the acquisition process itself. The elimination of aliasing ensures that
dipping events are imaged as optimally as possible.
Data acquisition parameters play an important role in subsequent imaging exercises,
while imaging algorithms vary considerably in their sensitivity to acquisition parameters.
Understanding the impact of acquisition parameters on imaging techniques is the key to
producing superior images.
Many geophysicists believe that there is some magic level of sampling, or that the
sampling rules seemingly demanded by acquisition and processing are unnecessarily
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strict. The basic idea that the human eye is better than the computer at being able to
see through under-sampled data is probably true. However, ensuring that any given
imaging application produces the most optimum results limits both the kind and style
of the acquisition method. For the most part, data must be sampled sufficiently finely to
ensure that the imaging algorithm can image target objects without loss of dip or image
quality.
Figure 8-6 provides simple, conservative formulas relating the important parameters
that affect the relationship of dipping reflectors at their true subsurface position to their
apparent dip on a two-dimensional seismic recording when the source and receivers
are coincident and the velocity is constant. The relationship between apparent dip, as
specified by a change in time versus a change in space, coupled with Shannon’s sampling
theorem, tells us when to expect and how to handle potential aliasing caused by spatial
sampling intervals.

Figure 8-6. Aliasing Formulas

The trigonometric 𝑠𝑖𝑛𝑒 function of the true dip of the subsurface event turns out to be the
ratio of half of the relative change in two-way time of the event at its apparent position,
Δ𝑡, to the spatial range over which the time change takes place, Δ𝑥, multiplied by the
assumed constant velocity of sound in the medium.
After this simple concept is understood, it is straightforward to use the Nyquist
relationship between time sampling and frequency to rewrite the basic formula in
terms of frequency. The Nyquist relationship states that a signal must be sampled at
a rate greater than twice the highest frequency component of the signal to accurately
reconstruct the waveform; otherwise, the high-frequency content will alias at a frequency
inside the spectrum of interest.

Chapter 8. Data Acquisition 235



Aliasing Panorama Technologies

Note that fixing any three parameters in the variety of formulas rewriting the basic
formula produces provides a bound for the fourth. In 3D, it is important to do the
calculations based on the largest spatial interval in the data set, Thus, if we want to
make sure that we can image a given set of dips at a given frequency and velocity, we
must make sure that the data has been recorded at the correct spatial spacing, or we
must migrate it at the proper sampling interval.
You should understand that these are conservative formulas. The fact that velocities vary
helps the imaging process because, in this kind of medium, ray bending improves the
ability to image steeper dips. In precise mathematical terms, note that:

(8-1) 𝜕𝑡
𝜕𝑥 =

Δ𝑡
Δ𝑥 =

2 sin 𝛼
𝑣

We all claim to understand the idea that when we sample a signal at a fixed even
increment, the resulting set of samples can be used to reconstruct the original signal
completely, but only up to a fixed frequency determined by the sampling rate (that is,
the Nyquist frequency). Thus, if we sample at 250 samples per second (in other words,
4 milliseconds per sample), the highest possible frequency we can record correctly is
125 Hz, or exactly half the sampling rate. Note that in this case, the Nyquist frequency
is determined equally from 250 or half of 1.0/.004. Thus, 125 = 1.0/.008. A similar
equivalence is available for surface sampling parameters. If lines are spaced at 100
meters, the spatial Nyquist frequency in the line direction is 1.0/200. This Nyquist
frequency specifies the maximum wavenumber or wavelength that can be safely
recovered from the surface sampled data in the line direction.
Figure 8-7 shows a schematic of a single plane monochromatic wave front traveling
at a slight angle relative to the vertical. The wave front on the right is recorded
in time, while that on the left is recorded in depth. The wave front in this case is
propagating in a constant velocity medium and is characterized by its vertical and
horizontal wavenumbers, or their reciprocal wavelengths. The vertical wavenumber,
𝑘􏷟, is completely determined by the frequency, 𝑤, and the velocity, 𝑣. In contrast, the
horizontal wavenumber, 𝑘𝑥, is impacted by the angle of propagation. Later, we will see
that this dependence on angle can be used to specify a simple migration algorithm.
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Figure 8-7. Wavenumbers

Figure 8-7 also shows the relationship between monochromatic wavefronts true dip.
The figure shows how the trigonometric functions relating apparent dip to true dip are
expressed in the frequency domain. The most important formulas say that the sine of the
true dip angle, 𝛼, is equal to the tangent of the apparent dip angle, 𝛽.
It is important to note that in the real world, this means that we must consider measured
seismic data to be digital in character, since the sources and receivers are at discrete
locations. Since modern data is also digital in time, reflection seismic processing today
is purely digital. Since wavenumbers of plane waves carry information about the angle
of propagation, this suggests that there will be some issues with regard to the aliasing of
dipping subsurface reflectors. The impact of aliasing on our ability to image subsurface
events will be discussed in subsequent sections.
Aliasing appears in many ways. Figure 8-8 demonstrates the appearance of aliasing
on zero offset sections. Here we see the difference between sampling at 27.5 feet and
110 feet. The figure on the left at 27.5 feet is clearly less aliased than the one on the
right at 110 feet; that is, the section on the left has been sampled sufficiently finely to
almost completely eliminate all aliasing for this level of dip. The section on the right was
constructed by simply eliminating traces from the one on the left. Evidence of aliasing
is represented by the grainy appearance and by the areas where events that follow some
hyperbolic-like trajectory appear more like a single flat event.
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Figure 8-8. Aliasing when the data are flat.

The synthetic CDP in Figure 8-9 is a normal moveout corrected CDP or midpoint
gather with both flat and hyperbolic arrivals. It demonstrates a form of aliasing that
occurs when the moveout of an event is so strong that the recorded spatial sampling
cannot handle its rapidity adequately. This means that events can be aliased in offset
even when all dips are perfectly sampled in space. This figure shows a synthetic
(raytraced) CDP with multiples that are aliased in offset. While the human eye has no
difficulty recognizing the pattern of these events, many noise suppression and migration
algorithms will treat these events in a predictable, but incorrect manner. For example, a
Radon transform is not be able to completely remove the event from the record.

Figure 8-9. Offset aliasing.
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Modern Acquisition Geometries

This section describes the physical structure of the commonly used methods of acquiring
seismic data over land and water environments.

Cross and Inline Spreads

Modern 3D land acquisition takes many forms. Figure 8-10(a) shows a typical cross-
spread acquisition where shot lines are perpendicular to receiver lines. As the acquisition
progresses, the entire pattern is rolled along to cover a large area. This represents true
3D acquisition with large azimuth variation.

Figure 8-10. Modern Land Acquisition

(a). Cross Spread Shooting (b). In Line Shooting

While the data from this kind of acquisition can still be sorted into the usual gathers,
it can also be sorted into what are called common azimuth gathers. While this type of
shooting produces uniform surface coverage, at least in terms of common midpoints, it
usually does not fully satisfy underlying mathematical requirements.
Figure 8-10(a) shows the geometry of source lines relative to receiver lines for what is
called cross-spread acquisition. Figure 8-10(b) shows acquisition for inline shooting. A
grid of receiver lines records the output of sources aligned along source lines. The source
lines are separated by 𝑑𝑠 and the receiver lines are sampled every 𝑑𝑟. Both the source
lines and receiver grids are rolled-along to achieve uniform surface redundancy. Part
(b) shows a typical inline land acquisition geometry. This style is clearly reminiscent of
typical 2D split-spread acquisition, and, in fact, the only real difference is that multiple
parallel receiver lines recorded each shot response. Like its cross-spread cousin, inline
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acquisition produces data sets with uniform surface coverage. Because the number of
recording lines is small, it usually only produces narrow azimuth data.
As was the case for our split-spread acquisition, each gather from either of the recording
geometries in Figure 8-10 can be migrated independently of any other similar gather.
Thus, we can conceive of migrating common azimuth volumes for detailed illumination
comparisons. Note that this kind of acquisition produces five dimensional data since
there are two coordinates for the source, two coordinates for the receiver, and one
coordinate for time. The most important point is that widely spaced lines are good for
quick coverage but are bad for spatial sampling.
Sampling will become an issue later when we discuss its impact on high resolution
migration algorithms. Although this style of sampling can generate many different
azimuths, each azimuth is poorly sampled, meaning that, in some cases, azimuth
migration cannot be performed.

CATS, NATS, and WATS

Marine data acquisition has evolved from single cable, single source acquisition to multi-
cable multiple source, multiple boat and even ocean bottom (OBC) configurations that
can record long offset data in record time. Again, redundant coverage can be sorted into
any of the orders discussed in old-fashioned, split-spread shooting.
Figures 8-11(a) and 8-11(b) show current common azimuth towed streamer (CATS)
and narrow azimuth towed streamer (NATS) geometries. There are typically 1 to 20
streamers spanning a cross-spread length from 0 to 2000 or 3000 meters. The geometry
on the left has many receiver streamers, while the common azimuth geometry on the
right has only one streamer. Although impossible in normal applications, the streamers
in the single-ended marine experiment are never really straight. For migration purposes,
the cross-spread width should be as large as possible.

Figure 8-11. Schematic of typical towed multi-streamer marine acquisition.

Towed streamers containing a few hundred receivers record data every time the sources,
usually air guns just behind boats, like those shown in Figure 8-12, are fired. Because of
boat movement, recording time is usually limited to at most 10 to 15 seconds. Receivers
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in each streamer data are very finely sampled in each dimension. Cable spacing is
rarely more than 100 meters with the number of cables ranging between 1 and 20. The
number of traces per shot is large while the shot density per unit area can be relatively
low. Although this kind of geometry has been used for many years and has proven
to be reasonably good for advanced imaging techniques, it is still somewhat far from
what the mathematics and physics demands. An important issue with this approach is
cable feathering caused by water currents, which usually means that it is not possible
to achieve the precise common azimuth form shown in the right half of Figure 8-11.
Since most of the algorithms we consider must be run on a grid, traces may have to be
regularized to that grid to ensure algorithm accuracy and final image quality.

Figure 8-12. Petroleum Geo-Services (PGS) boats in operation. Note the towed
streamers and the triangular shape of the Ramform boats.
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Figure 8-13(a) and (b) show a wide angle towed streamer (WATS) acquisition and
composite shot. In WATS schemes, gunboats make multiple passes over the same shot
line. One gunboat is placed at the head and to one side of the receiver array and the
other is on the same side at the end of the array. The boat towing the receiver array
parallels the gunboats, but traverses an every widening path in accordance with each
pass of the source boats. Part (a) shows double gunboats recorded by a single eight
streamer receiver boat to achieve shot centered receiver arrays. Four or more wider
receiver swaths may have to be recorded to produce sufficient data to produce receiver
arrays with areal coverage, as indicated by the surface coverage in the composite shot
layout in Part (b). The WATS technology may be the first marine acquisition scheme that
actually honors the mathematical assumptions underlying seismic imaging algorithms.

Figure 8-13. The geometry of wide azimuth towed streamer acquisition.

(a). Wide azimuth towed streamer
acquisition

(b). Wide azimuth towed streamer
composite shot

The composite shot in Figure 8-13(b) can contain a huge number of receivers. This figure
was constructed based on the assumption that the receiver boat could effectively tow just
eight streamers. Utilization of receiver boats towing 16 or more streamers would cut the
work load significantly while still producing a composite shot that is much closer to the
true mathematical ideal. When 8,000 meter streamers are separated by 100 meters, eight
streamer WATS shots have an areal extent of approximately 6,000 meters by 16,000
meters but could certainly cover an area 16,000 meters on a side. As shown by BP, these
types of acquisitions do, in fact, produce data sets fully capable of imaging complex
subsurface geology.

Vertical Cables (VC)

Vertical cables, as shown in Figure 8-14, are just that. Receivers are actually placed
along a vertical cable suspended at a fixed surface location either by sea anchors or
by a tether attached to the ocean bottom. Usually source and receiver reciprocity is
used to change the acquisition process into an equivalent one where the sources are
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assumed to be along the cable and the receivers on the surface. While vertical cable
acquisition is certainly capable of generating the equivalent of the composite shots of
WATS, this particular approach has never achieved its promise, probably because of
the inability to keep the cable in a fixed and completely vertical position. Furthermore,
processing common receiver gathers as if they were common source gathers is much
more computationally efficient than processing common-shot gathers.

Figure 8-14. Marine Vertical Cable Acquisition.

Ocean Bottom (OBC)

Since gunboats can shoot in a virtually unlimited set of locations, OBC acquisition can
generate areal array shots quite easily. In Figure 8-15, receivers are laid on the ocean
bottom and sources are located on the surface in gun boats like those shown in Figure 8-
16. The receivers on the ocean bottom can be organized into a grid or as a small set of
cables similar to those used on the surface. The grid can be positioned on the bottom by
a remotely operated vehicle, by a manned submersible, or by simply allowing the cables
or receiver unit to sink to the bottom. Wireless communication can be used to accurately
locate the receivers when in position.

Figure 8-15. Schematic of a typical ocean bottom acquisition.
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Figure 8-16. Fairfield gunboats near shore. OBC acquisition removes many
restrictions on where source boats can sail.

Because the sources are at the surface, the gun boat can move in any direction desired.
As a result, many azimuths can be recorded during the acquisition session. Data from
the receivers can be recorded on the gun boat or on another boat especially designed
for recording and processing. If sea-floor cables are used, this acquisition can be very
similar to orthogonal shooting on land. The basic difference is that the source boat
can move in any desired direction and consequently can generate full azimuth surveys.
Usually source-receiver reciprocity is used to view a common-receiver gather as a single
shot, making source spacing and density extremely important. Because receivers are
actually on the ocean bottom, this data usually must be preprocessed almost as if it was
land data. Certainly, receiver coupling or lack thereof, and the consequent amplitude
differences must be addressed and eliminated or at least suppressed.
Regardless of how they are generated, seismic wavefields are the result of particle
motion in the medium. Figure 8-17 shows two types of motion: compressional and
shear. The red wavefront particles are vibrating tangentially to the wavefront as part
of a shear wave. In a medium where velocity varies with angle (that is, an anisotropic
medium), there are two orthogonal shear waves. Shear waves do not propagate in a fluid
or gas. Particles on the blue wavefront vibrate perpendicular to the wavefront in the ray
direction and consequently are part of a compressional wave. Perhaps the best example
of a compressional wave is sound in air. Particles in air are compressed and rarified as
the wave front progresses. Compressional waves travel in virtually all fluids and solids.
Shear waves in solids generally travel at about 60% of the speed of compressional waves.
Typical speeds of compressional waves are 330 m/s in air, 1450 m/s in water and about
5000 m/s in granite.
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Figure 8-17. Shear versus Compressional waves

Shear waves are much more difficult to visualize than compressional waves. A good way
to think of shear propagation is to consider a deck of cards. It is quite easy to slide the
cards in the deck against each other and so generate a wave that propagates through the
deck from one end to the other. While this is not necessarily how such waves propagate
in the earth, the existence of shear propagation is not in question. Since shear waves
cannot propagate in water, it is impossible to record shear waves in the water layer, but
this does not mean that marine recordings do not contain shear wave information since
all recordings, both land and marine, contain converted wave data. Seismic data from
land and OBC data can both contain direct shear reflections, but data recorded in water
contains only shear-related compressional waves that are direct conversions from shear
to compressional at the water-ocean-bottom interface.
Practical acquisition of OBC data, as shown in Figures 8-18, 8-19, and 8-20 takes
several forms. Whether the receivers are cables, as shown in Figure 8-18, or individual
units like those shown in Figures 8-19 and 8-20, the primary objective is to place the
receivers on the ocean bottom at precisely known locations, but this is not always easy
to do. For example, cables are usually towed and then dropped, but even with radio
sensors, it is not always possible to determine their exact ocean bottom position. The
units in Figures 8-19 and the more modern version in Figure 8-20 contain computer
systems that can accurately determine position and relay the information back to the
recording instruments. In addition, they have sufficient local storage to record several
shot responses before they must transmit the data to the primary storage system.

Figure 8-18. Ocean bottom layout and acquisition. This figure shows the cables
and sensors used to acquire data from ocean bottom cables.
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Figure 8-19. This figure shows boxlike ocean bottom receivers being deployed
overboard (bottom left and top right) in both deep and shallow
marine environments. The top left composite demonstrates that
source boats can operate close to shore and platforms.

Figure 8-20. Fairfield Industries’ latest ocean bottom recorder contains four
phones and all the electronics necessary to record source-responses.

The secondary objective of OBC recording is to ensure that each component of the
OBC receiver is correctly oriented. Each OBC phone contains a hydrophone, two
shear phones, and one accelerometer. The two shear phones must be level and their
orientation fixed relative to the rest of the receiver units. Consequently, they are
gimbaled and adjustable based on each unit’s digital compass. Clearly, OBC acquisition
is difficult and potentially expensive.
Regardless of which acquisition method is employed, the net result are data volumes that
are truly massive. Figure 8-21 shows a single time slice through 20,000 square miles
of prestack, time-migrated Gulf of Mexico data with an average redundancy of about
90. Simple back of the envelope calculations suggest that the size of this data volume
is several hundred terabytes or more. One can easily imagine ocean bottom acquisitions
more than four times as large as this one.
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Figure 8-21. This figure shows a time slice from a prestack time migration that
essentially covers the Gulf of Mexico Continental shelf. (Image
courtesy of Fairfield Industries.)

Data Acquisition Summary

The usual seismic sound fields we record are due to what we frequently consider to
be point sources. As they propagate into the Earth, they radiate in all directions. The
normal to the propagating wave front at any given subsurface location points in the
direction of what you can think of as a ray. Since the propagation is normally not
constrained with regard to direction, this normal can point in any direction consistent
with the sound speed in the medium through which the field is propagating. If the
normal points upward, it is an upward traveling wave; if the normal points downward,
it is a downward traveling wave. Clearly such fields change directions at 45 degrees, and
they become purely horizontal waves at 90 degrees.
If we arbitrarily assume that what was recorded only propagated upward, much of
the true wavefield will not be properly imaged unless the assumption is true, but it
should be clear that this kind of assumption cannot possibly be true. Nevertheless, the
assumption that wavefields travel only in the upward direction is a major part of the
migration/inversion/imaging algorithm set.
Note that while the Earth permits wave motion in all directions, migration algorithms
may or may not be able to handle these motions. Table 8.1 summarizes the type of
algorithms that are currently used in practice. We will consider each of these types of
waves and how they impact the imaging process in the rest of the book.
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Table 8.1. Wave Motion Hierarchy

Wave Motion Wave Type
Waves move in all directions Two-way wave motion

Turning waves and rays
Waves move is almost all
directions

Almost two-way wave motion

Limited turning waves and rays
Waves move upward only Propagation angles less than 90 degrees

No turning waves or rays
Waves move downward only Propagation angles less than 90 degrees

No turning waves or rays

The measurement of seismic waves is accomplished using a variety of receivers or
phones. These devices can measure the velocity of particle motion (accelerometers),
pressure changes (marine geophones), and even the two shear waves. Modern OBC
data is usually acquired using all four of these devices. Note that, although each class
of phone records only data of that type, it also records all waves that converted from
one form to another. Thus, unraveling, migrating, or imaging these data is only possible
if they are all handled together. This is still a daunting task, even with today’s massive
computer power. The following list summarizes the type of microphones in use today.

• Accelerometers—Particle Velocity
• Geophone or hydrophone—Vertical Pressure change
• Shear Horizontal
• Shear Orthogonal
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Chapter9
Migration Summary

This chapter briefly summarizes the information about migration presented in previous
chapters.

Computational Complexity

The hierarchy of algorithms in Figure 9-1 makes us wonder why this diagram has so
many different one-way approaches. Why are there so many one-way methods and so
few two-way or almost two-way technologies?

Figure 9-1. The migration algorithm hierarchy
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The simple answer is that the demarcation between one-way and two-way methods is
one of computational efficiency. That is, one-way methods tend to be significantly more
computationally efficient than two-way methods. This statement is certainly a function
of algorithm implementation, but it is not a bad rule of thumb. Rumors have it that
the Gaussian beam method can be made extremely efficient, and so the rule may be
broken in that case. However, because all of the one-way methods function depth slice
by depth slice or time slice by time slice, two-way approaches that must compute the
entire wavefield at each propagation step usually lose the efficiency battle.
In spite of the apparent complexity of Figure 9-1, there are really only three basic
algorithm styles. The first group might be best referred to as raytrace methods, and
includes all of the Kirchhoff methods and the Gaussian beam. The second group
generally includes methods that image depth slice by depth slice using either finite
differences or some form of Fourier domain method. At the top of the hierarchy, the
third group does imaging volume by volume. Thus, the computational complexity
increases greatly as we move from the bottom to the top in Figure 9-1.
From a more practical viewpoint, raytrace-based methods are by far the most flexible.
They can output data anywhere at any desired volumetric level. At some loss of overall
accuracy, they can be made far more efficient than any other approach. In the slice-
by-slice world, common azimuth methods rule the day. As we move up the accuracy
chain, one-way shot profile methods are more efficient than two-way approaches. There
is no question that as the computational complexity increases, efficiency decreases, but
accuracy improves dramatically.

Velocity Sensitivity

Many geophysicists argue that high technology two-way methods are much more
sensitive to errors in the velocity model than any of the one-way approaches. Both
mathematical theory and experience contradict this assumption.
Any impulse analysis shows multi-arrival energy is very prevalent below complex
geometries defined by anomalously high velocities. Such structures include salt domes
and granitic overthrusts but can also be carbonate based.
Since rays, as computed by most raytraces, represent a high frequency approximation,
virtually any ray-based migration may be excessively sensitive to sharp velocity
discontinuities. This, together with the single arrival assumption, is certainly a major
reason that single arrival Kirchhoff methods are extremely poor at imaging below salt.
Most one-way implementations do a much better job of handling multiple arrivals, and
so it is not surprising that images produced with these methods are usually better than
single arrival Kirchhoff applications. But, because one-way methods have a built-in angle
limit, they also have a built in instability.
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Two-way methods, or at least those that are above the one-way line in Figure 9-1, have
almost no inherent restrictions on velocity variation, angle, or amplitude response.
Depending on the implementation, they can produce significant amounts of grid
dispersion resulting in something akin to a grid-based anisotropy, but, if that is handled
properly, we can be assured that the two-way method will have the least sensitivity to
velocity errors.

Amplitudes

The phrase true amplitude imaging, as used in this book, really means that, after
migration, any amplitude within the imaged volume is directly proportional to
reflectivity. There are, of course, so-called true amplitude one-way methods, but all of
those methods are simply modifications of a one-way method of choice to include some
aspect of two-way propagation. Jon Claerbout was the first to propose such a method
in his 1986 book, so the idea of making a one-way migration into a two-way migration
has been around for some time. However, as far as the author is concerned, the only
methods that can be called true amplitude methods are the full two-way method and the
Gaussian beam method.

Conclusions

Experience has shown that, given a good implementation, each of the one-way
algorithms has a useful place in most, if not all, prestack migration projects. When
implemented properly, almost any of the algorithms discussed here will produce a
reasonable result. From a hierarchical perspective, the top of the pyramid is dominated
by two-way methods. These full wavefield techniques always produce the best result
when the velocity model is correct. Moreover, they almost always do a better job than
their one-way counterparts when the velocity model is not correct. Moving down the
hierarchy tends to reduce the computational complexity at the cost of image quality.
Because they leave something out of the imaging process, one-way approaches are also
much more sensitive to velocity errors.
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Chapter10
Isotropic Migration Velocity
Analysis

Velocity analysis is one of the most important aspects of imaging seismic data.
Regardless of whether the project is a prestack time or depth migration, finding an Earth
model that produces the best possible image is seldom easy. What we know today is that
finding the optimum isotropic velocity is directly related to the experience of the analyst,
the quality of the migration tools at his or her disposal, and, of course, the quality of the
seismic data itself.
Almost all velocity analysis done today is what is normally referred to as migration
velocity analysis (MVA), and is usually based on some form of semblance calculation
and picking. This works reasonably well so long as the Earth model is isotropic, but
when the subsurface is anisotropic, it falls far short of producing reasonable estimates
of the totality of parameters defining the anisotropic world. Moreover, as we saw the
estimated velocity may produce a high quality image with excellent lateral positioning,
but depth conversions will be inaccurate. In this case, the analyst must have proper tools
for improving the number and accuracy of the parameters in the ultimate Earth model.
Almost nothing can be done about the seismic data from which the required Earth model
parameters must be estimated. There are certain simple preprocessing steps that can at
least reduce the possibility of limiting the quality of the final image. Some good and bad
data preparation practices are summarized in the following list:

• Deconvolution is good, provided that it enhances low frequency content
• Removing low frequencies is bad

– Velocity analysis requires many low but not so many high frequencies
– Migration basically trades horizontal wavenumber for vertical wavenumbers
– Migrate the data first to assess the need for low frequency removal

253



Panorama Technologies

• Two dimensional linear noise reduction may reduce dips
– FK or fan filters should be avoided unless absolutely necessary
– Prestack migration usually images linear noise to a point or off the section

• Multiple suppression can be a necessary
– SRME/Inverse Scattering is the optimum choice
– Parabolic methods should be used with care

• Migration from topography should always be a priority
– Sea floor topography is the same as topography
– Refraction statics should really be refraction tomography

In the author’s mind, there are four basic approaches to MVA.

• The first approach is what we will call short-spread-semblance-based velocity
analysis. This velocity analysis is based on a short enough spread to avoid
anisotropic effects and essentially provides what we have referred to as the NMO
velocity. It is useful for both compressional and, when available, shear data.
Typically, it does not consider issues related to any form of anisotropy. It can be
completed with or without horizons. This approach has been the workhorse of
MVA for many years.

• The second approach continues the use of the short spread approach, but adds
residual tomography to the mix. When the short-spread analysis methodology
is considered to have run its course, residual picks are used in a tomographic
inversion to produce a refined update. Tomography sometimes suffers from a lack
of redundancy that precludes its usefulness. It may also have problems due to short
spread limitations. In the traditional formulation, it may not have sufficiently wide
incidence angles to be effective. In some cases, the tomographic inversion can
be used to estimate simple anisotropic parameters, but this does not appear to be
routine.

• The third velocity analysis approach relaxes the short-spread assumptions, uses all
the data, and incorporates well information directly into the mix. This combination
of techniques requires the availability of additional data, usually in the form
of shear measurements, but some form of subsurface information is a must.
Subsurface knowledge can be empirical, rather then from a drill bit, but it is a
must. This approach requires much more interpretive input than the other two.
Perhaps its chief drawback is its continued dependence on semblance style picking.

• The fourth, and definitely least used and understood methodology, is what we will
call full-waveform inversion. This is what we might refer to as a hands-off method.
We formulate the problem in a purely mathematical sense and let a super computer
do all the work. While this approach, for the most part, has failed miserably in the
past, there are beginning to be indications that with the right data, full-waveform
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inversion may eventually become a useful tool. What is becoming clear is that for
full-waveform processing to become a useful technology, the industry must begin
to acquire much lower frequency and more densely sampled data. In addition,
computation power will have to increase several orders of magnitude, and the cost
of compute cycles will also have to decrease significantly as well.

Migration Velocity Analysis Geometry

Figure 10-1 graphically represents the basic idea behind migration velocity analysis.
Velocity analysis after migration estimates the velocity along the vertical from the
surface to the migrated output point. Of course, because it assumes that the source and
receiver are coincident, one cannot base a velocity analysis approach on this kind of
concept alone.

Figure 10-1. Migration velocity analysis geometry
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Developing a reasonable approach to velocity analysis requires that we have redundant
data and that we exploit this redundancy in order to provide velocity estimates.
Figure 10-2 illustrates the geometry in the case of non-zero offset from a ray-based
modeling perspective. We see that the recorded data, in yellow, is placed below the
surface midpoint. The red and green rays illustrate the paths taken by the illuminating
energy. After migration, the yellow apparent event is now places at its true location
below the vertical black image ray. Migration has moved the source and receiver
locations directly above the correct location. Thus, after migration, source and receiver
locations are lost. We can maintain redundancy by migrating common-offset sections
and hopefully develop velocity analysis approaches that are applied after migration. Our
goal is to provide velocity analysis methodologies that exploit residual redundancy to
refine initial velocity estimates.

Figure 10-2. Migration velocity analysis geometry
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Constant Velocity Migration Velocity Analysis

An early approach to pre-stack-time migration velocity analysis is illustrated in
Figure 10-3. The approach was popularized by Paul Fowler at the Stanford Exploration
Project and later at Western Geophysical in Houston, Texas. In part (a) we see the
general idea is to perform many constant velocity pre-stack time migrations and collect
the resulting information into a cube with axis for time, CDP, and velocity. Each fixed
CDP (y in this case) is then analyzed to select the optimum velocity at that location.
Figure 10-3b compares more traditional stacking velocity and DMO based approaches to
the one described by (a). The general conclusion is that the constant velocity approach is
somewhat better than the other two.

Figure 10-3. Migration velocity analysis geometry

(a). Constant velocity PSTM gathers
(b). Constant velocity PSTM image

comparisons
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Velocity Independent Migration Velocity Analysis

Another early approach to PSTM velocity analysis is illustrated in Figure 10-4. The
important issue with regard to Figure 10-4 is that we can apply this migration algorithm
without knowledge of the velocity. Once applied, a detailed analysis can then be
performed to determine the velocity that best flattens the gathers and produces the
best image. It is very important to note that this approach produces velocities that are
obtained at the migrated positions. Thus, the requirement of Figure 10-1 is met: The
velocity is at the migrated or vertical position where it is actually needed.

Figure 10-4. Imaging without the velocity

(a). Midpoint and offset sorts of a point
source (b). Dip independent constant velocity imaging

There are many variations of this approach. One, due to John C. Bancroft at the
University of Calgary and his colleagues, is called Equivalent Offset Migration, but,
except for the fact that it is not velocity independent, it is essentially equivalent to what
is described here.
Because this so-called velocity-independent approach is predicated on a constant velocity
assumption, it and the Fowler method are to a large extent identical in the kinds of
velocity models they produce. They are easily extended to 3D and can form the basis
for automatic estimation of initial velocity fields, but they are for the most part PSTM
methodologies. As we will see, the semblance-based approach in item 2 on page 254 has
a natural extension to depth migration based migration velocity analysis (MVA) methods.
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Migrated Common Image Gathers

There are at least four types of common image gathers that are suited to velocity analysis
after migration. You can probably find many more, but for our purposes, the four we
explain in this section will suffice.

Common Offset Migrated Velocity Analysis

The best known of these methods is Kirchhoff-based and produces migrated trace
ensembles based on migrating common input offset volumes. The advantage of the
Kirchhoff method is that we need not output every CIG during the migration process.
Indeed, we can focus on local areas, coarse grids, target lines, or just about any form
of output to use in the velocity analysis stage. The assumptions of this method are best
summarized in Figure 10-5. It is clear that offset information has been transfered to the
output point by simply shifting the source and receiver locations so that the new mid-
point is the current image or output location. Figure 10-6(a) provides the scheme by
which such offset gathers are produced.

Figure 10-5. Migration velocity analysis geometry

Figure 10-6(a) demonstrates the application of Kirchhoff migration on an offset-by-
offset basis. Separating the output data by input offset means that we quite naturally
produce input-offset gathers at each surface-defined image point. Such gathers are easily
understood by processors used to thinking in stacking velocity analysis terms.
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The Kirchhoff method is difficult but not impossible to extend to shot migration
approaches. In the case of shot migrations, it is quite easy to produce three gather styles:
Angle gathers, shot-profile migrated image gathers, and depth-focusing gathers. All three
are based on time-shift, offset-shift, or vertical-shift gathers produced during the prestack
migration stage. As we pointed out in the prestack algorithm chapter, these gathers
carry information directly related to whether or not the velocity at any give point in the
subsurface is accurate or not.

Common Angle Migration Velocity Analysis

Perhaps the best way to understand angle gathers is visualized in Figure 10-6(b). From a
ray-theoretic point of view, we are holding the opening angle (or double the incidence
angle) constant and producing output volumes parameterized by the opening angles.
Relatively complex mathematics allows us to compute these gathers after the completion
of the migration process but before removal of recording redundancy. An advantage of
these gather styles is that they can convey considerable information about the kinds of
analysis limits we might encounter prior to encountering them.

Figure 10-6. The three basic velocity analysis gathers

(a). Common-offset based Common Image
Gathers (CIG) (b). Common-angle gathers (CAG)

(c). Shot-profile migrated common image
gathers (SMIGs)

The production of common angle gathers as shown in Figure 10-6(b) is essentially the
same as the process in (a). The difference is that, instead of holding the input offset
constant, the process fixes the subsurface incidence angle to produce common angle
gathers. Common angle gathers are certainly worth utilizing, but are somewhat difficult
to use and are a bit costly to generate.
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Shot Profile Migrated Image Gather Migration Velocity Analysis

Producing image gathers of any useful form from a set of shot-profile images hinges
directly on the observation that after migration, the source and receiver are coincident.
This fact is independent of migration algorithm—it does not matter whether the input
data are migrated offset by offset, shot by shot, or common midpoint by common
midpoint. When we migrate offset-by-offset and form common offset gathers based on
the original input offset, we are assuming that the image point is directly below the
midpoint of imaginary sources and receivers at half the offset distance on either side of
the midpoint. Note that this also strongly implies that the migrated data have a fixed and
common azimuth. We also expect this to produce precise velocity estimates.
Figure 10-6(c) represents what we call shot-profile-common-image gathers. A SMIG consists
of all shots where the aperture contains a given fixed output image point. The migrated
offset in this case is exactly half the distance from the image point to the source location
for each trace in the gather. The reason for using half the distance will become clear in
subsequent discussions. It is worth noting that SMIGs are not common receiver gathers.
Since the fixed point is an output surface image location, they are true image gathers.
They can also be three dimensional.
In the case of SMIGs, as depicted in Figure 10-7(a) and (b), we assume that, after the
migration, the image point is directly below a source and receiver, and that it is again
separated by a half offset, except that in this instance, the offset is the distance between
the image point and the source. It is important to observe that these gathers are not
common receiver gathers since surface receiver information is no longer available after
migration.
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Figure 10-7. Shot-profile-migrated common image gathers (SMIGs)

(a). Graphic explanation shot-profile-migrated common
image gathers are formed

(b). Example shot-profile-migrated common image gather

Depth Focusing Migration Velocity Analysis

Depth focusing analysis gathers are essentially the information used to produce angle
gathers. They can be formed from either the time-shift or the offset-shift imaging
conditions, or even vertical depth-shift imaging conditions described in the section on
shot-profile migration.
Figure 10-8 illustrates the process. Part (a) is a cartoon of forward shot propagation,
while (b) is a similar figure for the backward propagation of the receiver data. By
shifting the arrivals vertically, laterally or temporally, we produce information that can
be analyzed to find the maximum energy in the arrival.
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Figure 10-8. Key Elements of depth focusing analysis.

(a). Forward Shot Propagation (b). Backward Receiver Propagation

Figure 10-9(a) shows gathers produced by a time-shift imaging condition. The horizontal
axis in this figure is depth and the vertical axis is time. Part (b) shows the relative depth
shift from a fixed position. If the velocities at each depth are correct. the maximum
energy arrivals will line up at zero time.

Figure 10-9. Depth Focusing Analysis. (After S. Mackay and R. Abma)

(a). Local Offsets (b). Relative Depth Focusing
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Semblance-Based Isotropic MVA on CIGs, CAGs,
and SMIGs

Figure 10-10(a) shows common input offset image gathers generated by migrating each
input sorted offset with a most energetic arrival Kirchhoff algorithm. Figure 10-10(b)
shows common azimuth generated common angle gathers and associated common angle
semblance panels. The angles range from 0 to 60 degrees in increments of 2 degrees.

Figure 10-10. Common input offset and common angle gathers.

(a). Input offset Kirchhoff common image
gathers

(b). Input offset common azimuth common
angle gathers

Figure 10-11(a) visualizes the kind of information angle gathers provide in sediments as
compared to subsalt settings. In (a), the general loss of angle information is gradual as
depth increases. In contrast, (b) shows that the loss of angle information below salt (or
any high velocity anomaly) is quite dramatic. This is one reason angle gathers might be
preferred over other forms of velocity analysis.
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Figure 10-11. Common angle gathers. Sediments versus Salt

(a). Angle Gathers in Sediments (b). Angle Gathers below Salt

The velocity analysis/inversion formulas for estimating velocity models from either offset
or angle gathers are shown in Figure 10-12. Note that the difference occurs because,
in the old case, the method estimates velocity without any knowledge of the velocity
used in the migration process, while in the new case, that information must be available.
Regardless, both methods are based on producing a maximum energy or semblance
display that can be directly picked to refine velocity estimates.

Figure 10-12. Angle Gather Velocity Analysis
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Whether we use 𝑧(𝛼, 𝛽) or Equation 10-1, estimating 𝑣 is usually based on semblance
panels calculated from Equation 10-2 or Equation 10-3.

(10-1) 𝑡(𝑣, ℎ) =
􏽱
𝑡􏷡􏷟 +

ℎ􏷡

𝑣􏷡

(10-2) 𝑠(𝑡(𝑣, ℎ)) =

⎛
⎜
⎝
∑
ℎ
𝑑(𝑥𝑠, 𝑥𝑟, 𝑡(𝑣, ℎ))
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􏷡
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(10-3) 𝑠(𝛼, 𝛽) =
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􏷡

In this case, 𝑠 is bounded between 0 and 1, but velocity at any given 𝑡 or 𝑧 is taken to be
the value that maximize the semblance. In spite of the fact that theory underlying these
equations assume flat lying reflectors, they have proven to very useful in development of
seismic imaging velocity models for both time and depth imaging.
Figure 10-13(a) includes images of a depth-to-time converted SMIG, a semblance panel
computed from the SMIG, the current section under analysis, and the velocity model
under construction. The process of actually doing the velocity estimation is shown in
Figure 10-13(b). From left to right, we see the raw depth-to-time converted SMIG and
semblance panel, the picked SMIG with hyperbolic trajectories and semblance panel,
and the moveout SMIG with semblance panel. This figure confirms that SMIGs can be
used for migration velocity analysis and also demonstrates the current semblance based
analysis process for developing short-spread velocity models.

266 Modeling, Migration and Velocity Analysis



Panorama Technologies Semblance-Based Isotropic MVA on CIGs, CAGs, and SMIGs

Figure 10-13. Common image gather velocity analysis

(a). SMIG Gather, semblance panel, in progress work section, and estimated velocity model

(b). Common image gather velocity analysis
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Figure 10-14 compares a common-midpoint gather, a common-midpoint gather with
DMO, and a Kirchhoff depth migration common-image gather to assess the impact of
partial and full migration, at least visually. The red line in the DMO stacks in (a) and
(c) indicate a location where a CIG was selected for comparison. Part (a) is from an area
where subsurface horizons do not dip severely, while Part (c) is from an area where
subsurface horizons do dip severely. If our interpretation of the theory is correct, there
should be little change in our velocity picks at (a), but considerable change for those
at location (d). Changes from stacking velocity to DMO stacking velocity to migration
velocity picks should be minimal in the former case and much more noticeable in the
latter.
Figure 10-14. Barents Sea velocity analysis over flat and dipping horizons.

(a). Location of a CIG with relatively flat
horizons

(b). Location of a CIG with steeply dipping
horizons

(c). Stacking, DMO, and Kirchhoff CIG
semblance at (a)

(d). Stacking, DMO, and Kirchhoff CIG
semblance at (b)

Figure 10-14(c) shows the picked curve from the migration analysis panel in (a) overlaid
on the DMO panel and stacking velocity semblance panels. Note that while the panels
differ in character, there is little reason to change the overall set of picks from one panel
to the other. The theory seems to be reasonably solid when the horizons are flat.
In contrast to Figure 10-14(c), the picks in the panels in (d) are significantly different
from each other. Even the DMO corrected panel in the middle, while better, is still
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significantly different from the Kirchhoff migrated common-image gather. We would
certainly be inclined to argue that stacking and DMO based velocity estimates are
inferior to those obtained from this Kirchhoff based depth migration algorithm.
Figure 10-15 shows the result of three iterations of what we will ultimately call the
painless approach to velocity model building. No horizons were used to estimate the
migration velocity. While more modern migration algorithms may produce improved
images, the common-image gathers are flat, and, in spite of the inability to image the
base of salt, the process clearly works, even in areas where the geology is complex and
the rocks are hard.

Figure 10-15. Full prestack depth migration of the Barents Sea data.
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Painless (No Horizons) Velocity Model Construction

Figure 10-16 shows a typical velocity analysis-velocity model building workflow. This
sequence of processes is typically used to convert data-driven-time dependent-stacking
velocity estimates into depth-interval or time-RMS velocity volumes. In the painless
approach, this process is carried out on flat-lying horizons, and is usually referred to as
vertical updating or the Deregowski method. Since we are using a migration algorithm in
an attempt to properly position events prior to velocity analysis, local dip information is
usually an issue only when the lateral velocity variation is strong.

Figure 10-16. A no horizon based velocity analysis workflow

Figure 10-17 provides one approach to horizon-less velocity model construction. The
idea is to directly map Dix intervals to an array of flat horizons at a user-selected fixed
depth increment. Note that this Dix conversion is taking place on migrated gathers, and
so should produce velocities at locations that are close to the true migrated positions.
These intervals are then interpolated to a 3D model along these horizons, where a great
variety of interpolation methods can be used. Such interpolation methods range from
simple inverse-distance weighting to Gaussian direction oriented balls, or in some cases
geostatistical prediction approaches.
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Figure 10-17. Painless (no-horizon picking) approach to velocity model
construction.

(a). Equally spaced flat horizons for painless
picking (b). Picked set of semblance panels

(c). Slice through the model from the initial
velocity analysis (d). Slice through the final velocity model

We can summarize the painless approach as follows: Begin with semblance panels
like those in Figure 10-17(b). These can come from stacking velocities or velocity
independent time migrations, or from depth migrations using any reasonable velocity
field. When picking is complete, interpolation is used to snap Dix-interval velocities to
each flat horizon. An example of the result of the interpolation is shown in Figure 10-
17(c). The noticeable bulls eyes are intentional. The interpolation process was modified
to ensure that these errors would produce an easy visualization of the location of the
spatial velocity grid. In this case, the velocity gradient (blue to red) reflects a significant
velocity change across a fault zone. No horizons were used in this process, but the
velocity model still reflects local geology. Figure 10-17(d) shows a final velocity slice
after three iterations. Again, the effect of geology is clearly evident in this graphic.
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Figure 10-18(a) shows an initial velocity model generated using a single well hung from
the water bottom. The water bottom horizon could come from a high-resolution analysis
of the sea floor or from a shallow depth migration with water velocity. Typically, the
well information comes from a well within the area extent of the seismic survey. In some
cases, the resulting velocity field may be adjusted (sped up or slowed down) to account
for depth discrepancies observed in other imaging projects.
As shown in Figure 10-18(b), MVA on CIGs can be used to painlessly update the initial
well-derived velocity model. The model in (b) can then be used to perform a salt flood
as shown in part (c). After the top and base of salt is determined, they can be directly
inserted into the MVA updated model to obtain the final salt filled model in (d).

Figure 10-18. Well driven marine (Gulf of Mexico) velocity analysis

(a). A 𝑣(𝑧) hung off the water bottom (b). Painless velocity update

(c). A “salt flood” migration (d). Salt body insert
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Figure 10-19(a) is a final image based on the process described in Figure 10-18. This
volume was the result of a common azimuth migration. Note the excellent definition
of the top, the base, and the subsalt reflectors. The associated flat image gathers in
Figure 10-19(b) show that the painless approach to Earth model estimation can be quite
successful.

Figure 10-19. Full volume common azimuth migration and associated image
gathers.

(a). Full volume common azimuth migration

(b). Common image gathers from the migration in (a)
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As detailed in Figure 10-20 (b), prestack time imaging can frequently be done using
the painless approach with automatically picked CIGs. When the input data is of high
quality, automatic picking can be a useful tool to both assess the need for preprocessing
and to quickly provide a useable image.

Figure 10-20. Automatically picked prestack Kirchhoff time migration.

(a). Autopicked CIGs (b). Prestack time migration via autopicking

Horizon-Based Velocity Analysis

So the question is: Do we ever need horizons?
In some sense, the answer is driven by how well we can flatten the gathers we output
from the Deregowski loop. It is great when the painless method does a good job of
flattening the gathers because horizons certainly create a plethora of problems in an
iterative scheme for velocity estimation. We would like to avoid these problems in all
situations. Horizons change shape and position every time a new Earth model is part of a
re-migration of the original input data. The processor is then either forced to reinterpret
a new set of horizons or to edit the existing set prior to another iteration of velocity
analysis. It would certainly be nice never to have to worry about horizons. There are
also geologic environments where horizons are just as useless as the painless approach in
those environments, but it is also probably true that in this kind of regime, nothing will
produce acceptable results.
There are certainly many geologic settings where the use of horizons is absolutely
necessary. Horizons are essential when strong, visible velocity anomalies, such as salt
domes and sills, are present. The tops, sides, and bottoms of these visible bodies are
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interpreted, defined as horizons and inserted into an existing Earth model. Figure 10-21
shows how the top of salt is interpreted in a salt flood exercise.

Figure 10-21. Horizon interpretation for a salt flood.

Horizons are probably also essential when velocity anomalies are invisible. In this
case, we cannot interpret the tops, sides and bottoms, so horizons above and below the
suspected area are the only option. In certain geologic settings, most notably in areas
with strong carbonate bedding, fast velocities within relatively thin sections require
utilization of interpreted horizons to produce adequate estimates of the velocity within
the bedding planes. When data-based estimates are insufficient, horizons may also be
useful as control surfaces allowing constant velocity insertion between specific layers to
define a more accurate Earth model. Perhaps the most important setting where horizons
are required is when it becomes clear that the painless approach has failed miserably.
In this case, it is probable that an attempt to apply tomographic inversion will also be
recommended. However, there are always exceptions to almost every rule. In geologic
environments where subtle velocity variations are not easily seen, we may have to resort
to more extreme approaches. This would definitely include very fine horizon based
velocity model construction along with full utilization of tomography.
Figure 10-21 is an illustration of the interpretation of horizons on top of a base of salt.
This kind of interpretation is also necessary for certain kinds of residual tomography.
Typically, a reasonable set of horizons provides tomographic inversion with precisely the
information necessary for success. It is not necessary to be as accurate as we might be for
prospect generation, but it is necessary to define as many horizons as possible.
Once horizons have been defined, velocity picking can be done along the horizons
themselves. While this should produce horizon consistent velocities, vertical updating
through the Dix equation is still necessary to provide the required interval velocity
estimates above the horizon under analysis.
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Figure 10-22 shows the kind of model produced from a typical horizon based approach.
It is difficult to believe that the blocky nature of this model is realistic. Because they
use high frequency approximations, raytracers have considerable difficulty calculating
accurate traveltimes unless the model is smoothed. The only real way to avoid the
blocky nature evident in this image is to interpret a large number of densely spaced
horizons or to insert a large number of invisible horizons between relatively sparse sets.
Interpreting a large number of horizons requires a considerable amount of human time
and cost. Interpolation of a fine set of horizons between sparse data seems to be moving
back toward a more painless methodology. However, in situations where compaction
plays an important role in vertical velocity variation, forcing the velocity structure to
follow horizons when they are not the chief defining factor can be disastrous.

Figure 10-22. A horizon based velocity model

In Figure 10-23, we see a set of gathers that have been through several iterations of
vertical or Dix updating. Note that the gathers on the right are reasonably flat while
those on the left are not flat. Because these gathers produce poor images when stacked,
this phenomenon cannot be improved by traditional horizon-based vertical methods.
This three-dimensional effect was ultimately resolved only by careful application of
tomography. While there are many approaches to tomography, recent experience has
shown that residual methods work best. Residual approaches are usually applied only
after an initial migration velocity volume is available. They also normally require
reasonable information about local dip, which can be obtained from a horizon-based
approach, or by direct estimation of the local dip from the current image, or from
specific geologic knowledge. Since horizon-based methods tend to offer better accuracy
than direct automatic estimation, we restrict our attention to that methodology. Note
that this implicitly assumes some form of geologic interpretation of the study area.
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Figure 10-23. Non flat gathers.

Figure 10-24 shows a typical horizon-based velocity analysis–velocity model building
workflow. This sequence of processes is almost identical to that in Figure 10-16 on
page 270, except that velocities are “snapped” to user-defined horizons rather than to
an equally spaced set of flat horizons. Perhaps one benefit to this kind of analysis is that
once the process has reached a stationary point, all the necessary information required to
apply tomography is in place.

Figure 10-24. A horizon based velocity analysis workflow
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Residual Tomography

The basic geometry of residual-seismic tomography is explained by Figure 10-25. We see
two source-image-point-receiver raypaths, one in red at a short offset and one in green
at a longer offset,. These raypaths represent the migrated location of a reflector at each
of these offsets. As each of these rays pass through the cells of the gridded model, it is
possible to calculated the total distance traveled from source to receiver for the current
migration velocity model.

Figure 10-25. Tomographic Geometry

Whether calculated for the red or the green ray, that distance, 𝑑, is given by Equation 10-
4, where Δ𝑙 is the length of the ray in any given grid cell and Δ𝑠𝑚𝑖𝑔 is the actual
migration velocity in that cell.

(10-4) 𝑑 =
𝑅

􏾝
𝑆

Δ𝑙Δ𝑠𝑚𝑖𝑔

What we are interested in finding is the true velocity, Δ𝑠𝑡𝑟𝑢𝑒. To do this, we calculate Δ𝑧
for each ray path in the model using Equation 10-5.

(10-5) Δ𝑧 =
𝑅

􏾝
𝑆

Δ𝑙(Δ𝑠𝑚𝑖𝑔 − Δ𝑠𝑡𝑟𝑢𝑒)

Note that we can measure Δ𝑧 for each horizon on a CIG, and so we assume we know this
value for each and every possible ray. Algebraically, Equation 10-5 is a matrix equation
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of the form shown in Equation 10-6, and it can be solved for Δ𝑠.
(10-6) 𝐀Δ𝐬 = 𝐙

Once Δ𝑠 is known, computation of 𝑠𝑡𝑟𝑢𝑒 is straightforward.
In many respects, seismic tomography is very similar to common computer aided
tomography (CAT) scans. The primary difference between the two is that CAT scans
record purely transmitted energy, while seismic tomography is reflection based.
Computer aided tomography reconstructs an image of human tissue by back projecting
recorded transmission energy over a straight line. Seismic tomography back projects
over a reflection cone. Seismic tomography is also a residual technique. It does not
use directly recorded information to estimate the Earth model, and is always based on
information extracted from an existing imaging exercise.
Figure 10-26(a) is an example of residual tomography as it would apply to residual offset
dependent depth differences at two line and crossline locations. The figure shows back
projected ray bundles indicating changes in velocity as a function of offset from the
central line and crossline location.

Figure 10-26. Fundamentals of residual tomography

(a). Tomographic back projection (b). Tomographic geometry

Residual tomography, as shown in Figure 10-26(b), is based on the assumption that
after a prestack depth migration with velocities that are close to each other, lateral
positioning of subsurface events will also be close to correct. This being the case, we
can relate differences in depth differences as a function of offset to a residual velocity
or slowness increment needed to make the arrival on the common image gather flat. To
do so, we need to have reasonable estimates of the local dip everywhere in the volume
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being analyzed. In this figure, the correct or reference dip is measured correctly at the
offset determined by the near zero-offset trace (the green rays). What we measure is the
residual depth difference at some other offset (the red rays). If we know the local dip, all
this information can be related to a change in velocity that forces the next migration to
produce much flatter common-image gathers.
Thus, the input required to perform a residual tomographic inversion is:

• a reasonable migration velocity field
• a picked set of residual depths
• a good set of horizons or some other method for estimating local dip. If horizons
are used, there should be as many horizons as possible.

Figure 10-27 shows what we need to measure to have the proper information to use
the method outlined in the previous figures. The right hand side of this figure is a
common-image gather after a migration with an incorrect velocity. Note that the curved
arrival is close to parabolic or even hyperbolic in shape, but is definitely not flat. The
curved green line marks residual depth differences in reference to the shortest arrival.
Because the arrival curves down, we know that a velocity above the horizon is too slow
to properly correct the horizon at all offsets. Had it curved upward, the velocity in
question would have been too fast. Knowing that the velocity is too slow is one thing,
but knowing where it is too slow is another thing entirely. What residual tomography
does is use redundancy of estimation to determine where to change the velocity to
produce flat arrivals. This means that to be effective, tomographic inversion must have
sufficient redundancy to do its job. This, in turn, means that we must solve a huge
tomographic problem. It also means that a good tomographic solver will have been
designed to work from automatically-picked residuals.

Figure 10-27. Residual depths as input to tomography.
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Figure 10-28 is an example of the use of automatic dip estimation and flattening on a set
of CDPs from the SEG AA′ data set. Parts (a) and (b) of this figure are illustrative CDPs
and their flattened counterparts. Figure 10-28(c) is the result of stacking the entire suite
of CDPs in the line.

Figure 10-28. Automatic dip estimation, flattening and stacking.

(a). SEG AA′ Gathers before dip (b). SEG AA′ Gathers after dip

(c). SEG AA′ Auto Stack after dip
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Figure 10-29 is for illustrative purposes only. Residual depths are estimated along
horizons. Clearly there is no need for residual tomography at these locations. The
colored lines just indicate the depths at which horizons intersect each offset plane.

Figure 10-29. Residual moveout along a horizon. This is Horizon Based Velocity
Analysis or HBVA.
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In certain cases, migrating along a predefined horizon (slab migration) reduces
computation time and results in faster turnaround time. Figure 10-30 shows the stack of
data migrated along a given 3D surface.

Figure 10-30. Imaging Along a Slab

Performing percentage-based migration over a horizon can result in horizon-based
analysis similar to that shown in Figure 10-31.

Figure 10-31. Residual Moveout Along Horizons

Tomographic updating should not be considered to be a technology that solves all
velocity update problems. Like its semblance-based counterpart, tomographic accuracy
is dependent on the angle range at any given point reflector. As depth increases, this
angle range decreases in width until it is too narrow to be of value. Once the angle range
reaches a width of less than 10 degrees, tomography is no more useful than traditional
semblance-based analysis.
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Tomography works best when at any given depth slice, its back projected cones, as
displayed in Figure 10-26 on page 279, overlap. Again, as depth increases, the degree of
overlap decrease and thereby reduces the effectiveness of the tomographic update. Some
of these issues can be handled through interpolation or physical and geologic constraints
of the type illustrated in Figure 10-32, but little can be done about the angle range.

Figure 10-32. Natural Tomographic Constraints

284 Modeling, Migration and Velocity Analysis



Panorama Technologies Residual Tomography

Figure 10-33 shows the tomographic exercise in graphical form. The left side of
Figure 10-33 shows the horizons which were picked from the initial Dix-based velocity
updating. The center graphic of this figure shows the residual depth differences from an
automatic picker. The rightmost image in the figure] shows the updated velocity model
after the completion of a residual tomographic update. Compare this to the original
velocity field in a past slide.

Figure 10-33. Horizon Based Tomography
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Figure 10-34 contains a side-by-side comparison between a vertical and a tomographic
update. The vertical update is on the left and the tomographic update is on the right.
Note the velocity inversion (the green on the right hand side of the right figure) and the
increased dips roughly in the middle of the right-most figure. This data is over a granitic
overthrust in the state of Wyoming in the USA.

Figure 10-34. Vertical versus Tomographic Velocity Update

(a). Vertical Update (b). Tomographic Update
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Figure 10-35 is an idealized flowchart summarizing the concepts and ideas discussed in
this part of the course. The first part of this slide embodies what might be called vertical
updating. It is only at the bottom the figure that we actually begin the option to use
tomographic updating. Note that tomography is applied only when there is sufficient
residual curvature in the output gathers to warrant it. Velocity defined structures, such
as salt, are updated through velocity floods. After the top and base of the anomaly is
well defined, residual tomography can be re-applied as needed.

Figure 10-35. Painless Model Estimation Finalized Workflow
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An essential feature of velocity model construction in hard rocks or on land is the
increased utilization of wells when available. What is important for this book is the fact
that depth migration continues to play its part in the ultimate velocity model definition.
In some sense, Figure 10-36 is more or less identical to the previous soft-model slide.
The only real difference is when wells are present is to convert the well information so
that it matches seismic times. We can think of this process as check-shot correction, but
it is just as easy to do when events at specific times can be matched to specific depths on
borehole data. Frequently, velocity anomalies can be resolved in much the same manner
as those caused by salt structures in the Gulf of Mexico.

Figure 10-36. Hard Rock Horizon Based Model Estimation Finalized Workflow
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SEG AA′ Case Study

At this point, previous work flows and schemes for estimating depth migration velocity
fields may seem a bit daunting. It is probably worth going through the process on a
couple of selected synthetic examples where we know what the answer is. Our first
example is based on the so-called SEG AA′ synthetic. It is really not proper to begin by
showing the true velocity model at the start of this exercise, but the interested reader
can find that image near the end of this section. An automatically stacked version of the
input data is shown in Figure 10-28.

Figure 10-37. SEG AA′ coarsely picked background velocity (every 200).

Figure 10-38. SEG AA′ First Iteration Auto Picking

(a). SEG AA′ Auto Picked CDP (b). SEG AA′ Auto Picked Semblence
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Figure 10-39. SEG AA′ First Iteration Auto Picked Models and Kirchhoff PSDM.

(a). SEG AA′ Auto Picked
RMS

(b). SEG AA′ Auto Picked
Depth

(c). SEG AA′ Migration using
(b)

We start the process by first estimating a pre-stack time velocity profile, converting
that to depth and then performing a migration of the recorded data. Figure 10-37
shows a stacking velocity model constructed by picking every 200th CDP from the
input data. This is clearly a very coarse model, but its real purpose is to give us a
background for automatic picking of the SEG AA′ input data. Figure 10-38(a) shows
a selection of automatically picked gathers, while the graphic in (b) illustrates the
corresponding semblance panels. The automatic picking used the model in Figure 10-37
to tightly constrain the picks. Thus, it is not surprising that the stacking velocity model
in Figure 10-39(a) does not vary much from the coarse hand-picked model in Figure 10-
37. The interval velocity model in Figure 10-39(b) was used to migrate and obtain the
image in part (c).
It is clear that we need to repeat this picking process in hopes of improving our image
substantially. To this end, we first use the model in Figure 10-39(b) to time-to-depth
convert and apply inverse NMO. Figure 10-40 illustrates the process. The set of common
image gathers (CIGs) in part (a) of this figure show that the initial stacking velocity
analysis did not produce a very good model. The gathers are not flat and, in fact, appear
to have little or no NMO correction. However, the fully inverse NMO corrected gathers
in Figure 10-40(b) have considerably more moveout, so the migration did improve
the flatness of the gathers to some extent. Parts (c) and (d) of Figure 10-40 are the
automatically picked gathers and semblance functions from the inverse NMO corrected
time-gathers.
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Figure 10-40. SEG AA′ Autopicked First Iteration CIGs and Semblance

(a). 1st Auto Picked PSDM CIG (b). 1st Auto Picked PSDM CIG after INMO

(c). 1st Auto Picked PSDM CIG (d). 1st Auto Picked PSDM CIG Semblence

The newly computed velocity model from these picks is displayed in Figure 10-41(a) and
the newly computed image based on this model is shown in part (b). A careful review of
the CIGs from this second iteration suggested that it was time to estimate and insert the
salt top and base. To this end, the top of salt was picked from the image in Figure 10-
41(b). The salt flood based on the top of salt surface is displayed in Figure 10-41(c) and
the resulting salt flood image is in part (c). The base of salt was defined from the image
in Figure 10-41(c) and the resulting salt body inserted into the model in (a). The result is
shown in Figure 10-41(d). Part (e) is the image based on the model in (d).
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Figure 10-41. SEG AA′ Second Iteration Autopicked Models and Section

(a). 2nd Auto Picked Model (b). 2nd Auto Picked Model Image

(c). 2nd Auto Picked Salt Flood Model (d). 2nd Auto Picked Salt Flood Image

(e). 2nd Auto Picked Depth (f). 2nd Auto Picked Depth

At this point, it is clear that the crude picking, Dix inversion-migration process has
produced a reasonable image of what we might call sediments and the salt structure. It is
also clear that the image below the salt is not fully sensible geologically. We would think
that the way forward would be to keep the salt body in place and complete a very careful
re-picking of the CIGs below salt. Unfortunately, the offset range was somewhat limited
and almost any velocity below salt produces some kind of image.
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Thus, it appears that our only option is to perform several additional migrations using
models constructed with percentage differences or maybe even constant velocities below
the salt. Figure 10-42 and Figure 10-43 illustrate this. Figure 10-42(a) through (k)
graphically depict the utilization of what might be called estimated velocities in (a)
and (b) through constant velocity increases from 5,000 ft/sec through 7,000 ft/sec in
(c) through (l). Similarly Figure 10-43(a) through (l) depict the utilization of velocities
ranging from 7,500 ft/sec through 10,000 ft/sec.

Figure 10-42. SEG AA′ Second Iteration Autopicked Models and Sections Using
Increasing Velocities Below Salt

(a). 2nd Auto
Picked Depth (b). 2nd SaltFlood

(c). 5.0K subsalt
velocity

(d). 5.0K subsalt
velocity

(e). 5.5K subsalt
velocity

(f). 5.5K subsalt
velocity

(g). 6.0K subsalt
velocity

(h). 6.0K subsalt
velocity

(i). 6.5K subsalt
velocity

(j). 6.5K subsalt
velocity

(k). 7.0K subsalt
velocity

(l). 7.0K subsalt
velocity
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Figure 10-43. SEG AA′ Second Iteration Autopicked Models and Sections using
increasing velocities below salt

(a). 7.5K subsalt
velocityl

(b). 7.5K subsalt
velocity

(c). 8.0K subsalt
velocity

(d). 8.0K subsalt
velocity

(e). 8.5K subsalt
velocity

(f). 8.5K subsalt
velocity

(g). 9.0K subsalt
velocityl

(h). 9.0K subsalt
velocity

(i). 9.5K subsalt
velocity

(j). 9.5K subsalt
velocity

(k). 10K subsalt
velocity

(l). 10K subsalt
velocityt
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After Tomography

A careful analysis of the migration images in Figure 10-42 and Figure 10-43 suggests
that the closest correct sub-salt velocity is about 9,000 ft/sec. Based on this assumption,
the input data were re-migrated using 9,000 ft/sec below salt velocity and a dip-based-
automatic-flattening analysis performed to generated the necessary input for residual
tomography. Residual tomography was then applied to generate a new model and the
data re-migrated. Figure 10-44(a) displays the tomographically-estimated velocity while
(b) shows the true velocity model.

Figure 10-44. Estimated versus True Velocity model.

(a). Estimated Velocity Model (b). True Velocity Model
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The flatness of the after-tomography gathers is illustrated in Figure 10-45(a) and (b). The
gathers in Figure 10-45(a) figure are within what might be called sedimentary geology,
while those in part (b) fall within the salt regime.

Figure 10-45. Gathers after Tomography

(a). After Tomography in Sediments (b). After Tomography in Salt

Figure 10-46 is a full comparison between utilization of the estimated velocity field
in Figure 10-44(a) and the exact velocity field in (b). Note that in every case the one-
way algorithm has produced an image that is significantly better than its Kirchhoff
counterpart.

296 Modeling, Migration and Velocity Analysis



Panorama Technologies SEG AA
′
Case Study

Figure 10-46. Estimated versus True Velocity Image Comparisons.

(a). Kirchhoff using Estimated Model (b). Kirchhoff using Exact Model

(c). One Way using Estimated Model (d). One Way using Exact Model
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Marmousi Case Study

The original Marmousi data set is somewhat of an enigma. It was designed based on
offshore Angola geology and represents a double anticline with the upper anticline
sitting virtually directly on top of the lower. The lower structure was prospective but
very difficult to image. Neither prestack time migrations or early depth migrations of the
day could successfully image the reservoir. Because of this difficulty, Institute Francais
de Petrol constructed a model closely resembling the interpreted structure, shot synthetic
data over the model and then presented the data to the geophysical community of the
day with a challenge to figure out the model from the data alone.
The synthetic data consisted of 240 96 channel shots spaced at 75 meters. The 96
receivers were separated by 25 meters at an offset 200 meters from the shot. Each
receiver was the result of summing a more finely sampled array. The wavelet used in this
case was neither minimum, maximum, nor zero delay, but produced an effective delay
of about 60 ms in the synthesized data. The challenge thus included wavelet processing
as well as velocity analysis or inversion and imaging. The goal was to find the velocity
model as accurately as possible.
A paper in the 1990’s by Sebastian Geoltrain and Roloff Versteeg suggested that
Kirchhoff methods alone could never image this structure. While apparently true at
the time, as we saw in the chapter on prestack algorithm examples, the real reason this
hypothesis made sense was more closely related to the acquisition parameters than to the
imaging algorithm.
Our goal here is to see just haw far we can go to produce something close to the actual
true velocity. In this sense, we intend to use every available trick in order to achieve our
goal
Figure 10-47 shows typical MVA panels based on the initial stacking velocity analysis
shown in Figure 10-48. Of interest are that

• the stacking velocity model in (a) is extremely smooth
• the Dix depth-interval model in (b) is close to a 𝑣(𝑧)
• the image in (c) is essentially what you get doing a PSTM

The smoothness in this case is directly related to the fact that picking was performed on
every 100th CDP and that a rather long smoother was applied during the construction of
the full model.
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Figure 10-47. Marmousi velocity analysis and NMO CDP 1000.

(a). Marmousi CDP 1000l
(b). Marmousi CDP 1000

Semblance
(c). Marmousi CDP 1000

NMO

Figure 10-48. Initial Marmousi stacking velocity models and migration.

(a). Stacking Velocity Model
(b). Dix Depth-Interval

Model (c). Migration with (b)

The panels in Figure 10-47 were used to construct the model in Figure 10-49. While
the changes are not dramatic, it is clear from the depth-interval model in (b) that the
geology does not really follow a 𝑣(𝑧) assumption. Note that the image in (c) is also much
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more realistic. The only issue in the picking process relates to whether the clear speed up
on the left hand side of the model is real or not.

Figure 10-49. Iteration 1 RMS and interval velocity models together with
migration based on (b).

(a). Kirchhoff MVA RMS
model

(b). Kirchhoff MVA interval
velocity modell

(c). First iteration image with
(b)

Using the model in Figure 10-49 as a guide, a new model was constructed from the
current prestack data to effect a slow down of the left hand side high velocity zone. The
result is shown in Figure 10-50(b). Note also that the image is now somewhat more
realistic, but the gathers are still not completely flat.

Figure 10-50. First iteration velocity model slowdown together with migration
based on (b).

(a). Kirchhoff MVA Interval
velocity model

(b). Kirchhoff MVA
Slowdown of (a)

(c). First iteration slowdown
(b)

Using the data from the PSDM based on the model in Figure 10-50, panels like those
in Figure 10-51 were picked and used to produce the model in Figure 10-52(a) and
the migrated image in Figure 10-52(b). When compared to some of the best images
produced in the original Marmousi velocity estimate exercise, this image is not too
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bad. What is clear is that to improve the answer, several additional iterations will be
necessary, but there is absolutely no guarantee that better results will be obtained. In
fact, with a nominal maximum offset of just 2600 meters, it is unlikely that velocities
below about 1,300 meters per second can be improved much at all.
Is it time to change gears?

Figure 10-51. Marmousi CDP 875 after inverse NMO using the model in
Figure 10-50.

(a). Marmousi CDP 875
Semblance (b). Marmousi CDP 875
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Figure 10-52. MVA Velocity model from migration based on Figure 10-50 model
together with migration. In this case, picking was done every 25
CDPs between CDPs 700 and 1200.

(a). MVA Velocity Model (b). Migration with MVA model

Inversion

At this point in any project, we have a velocity model and an image, but we have no idea
how accurate the model is. Realistically, we have more velocity models than we know
what to do with, and we don’t have a clue as to which one is best.
We also have modeling algorithms, so if we believe our model is so good, why don’t we
test it by shooting data over the model and subtracting the synthetic from the observed
data? That is, for each trace in the observed data, generate a synthetic trace, and then
create a completely new data set using a trace-by-trace subtraction. If the model is
perfect, we get nothing better than completely random noise and we simultaneously
validate the model.
But what if we don’t get random noise? Is there any way to use the information from
the residual to estimate a new velocity model? The answer is yes, of course, and the
mathematical recipe is relatively simple. All we have to do is prestack-reverse-time
migrate the difference, normalize in the proper manner and add the result back to the
current model. Given the new model, we repeat the process of synthetic generation
and subtracting. If the new difference is still not zero, we repeat the exercise until the
residual can no longer be reduced. This inversion approach was first presented in the
geophysical literature by Lailly in 1983, and Tarantola in 1984. When they tested it, it
failed rather miserably. We should not let that bother us. The idea looks sound. Maybe
they did something wrong, or maybe they just did not have the computer power to test
the theory in an optimum manner. Let us do our own test.
Figure 10-53 shows the result of testing the theory on synthetic data from the Marmousi
model. Starting with the 𝑣(𝑧) model in (b) of this figure, we synthesized a survey with
the same geometry as the data over the model in (a). We then ran the process described
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above iteratively. The result after 100 iterations is shown in Figure 10-53(c), and after
slightly more than 600 iterations, in (d). Note that the process has worked extremely
well. The velocity error in Figure 10-53(e) is virtually zero, except for those areas
outside a offset dependent cone. Note also that the RMS error in (f) has been reduced to
a very low level. It is probable that we could have stopped after 300 iterations or so, but
we cannot argue with the overall results.

Figure 10-53. Marmousi Full Waveform Inversion

(a). The Marmousi model (b). The initial model

(c). The inverted model after 100 iterations (d). The inverted model after 600+ iterations

(e). The Velocity error after 600+ iterations (f). The RMS error
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Figure 10-54 further confirms the high quality of the inversion process. This figure
shows logs taken at distances of 3000 and 7000 meters from the left hand side of the
model. The green line in this figure shows the initial 𝑣(𝑧) used to start the process,
the red line is the true velocity while the blue line is the inverted velocity after 600+
iterations. Note that down to about 1500 meters, the results are truly outstanding.

Figure 10-54. Inverted Versus True Logs

So why did this work now, when it failed so miserably before? Well, to tell the absolute
truth, we actually ran the process on extremely low frequency data that we generated
over the model in Figure 10-53(a). These data, shown in Figure 10-55, extended over
the entire length of the model and had a bandwidth that extended from 0.3 Hz to 18.0
Hz. The model was sampled with a very fine grid to minimize dispersion and to ensure
that each modeling exercise was as accurate as possible. However, there is no doubt that
the real reason this process worked is directly related to the low frequency content of the
data.
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Figure 10-55. Marmousi Ultra Low Frequency Synthetic Data
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Chapter11
Anisotropic Velocity Analysis

Tying well tops to seismic reflections requires detailed discussion of time-to-depth and
depth-to-time conversion, as well as migration to true depth. Historically, tying wells
to a seismic migration was called depthing and usually converted only a few horizons
to depth. This depthing process was almost solely focused on ultimately providing an
accurate conversion of an interpreted migrated time map to depth in such a manner
that the horizon depth in all wells within the mapped area were matched as precisely
as possible. This process was not concerned with producing depth volumes containing
all horizons of interest; it was only concerned with matching well tops. Accomplishing
this feat required that all well tops of interest be tied to the corresponding seismic time
image with precise accuracy. When necessary, well velocities were modified to fit the
observed discrepancies, and, after much trial and error, a suitable velocity 𝑣􏷟(𝑥, 𝑦) map
for depth conversion of the given horizon was produced. The underlying assumption
in all of this was that the time migrated volume was as accurate as necessary, and well
discrepancies were just a function of measurement error. It is now known that the truth
is not so simple. The reason we had to tie the seismic data to the well was that the
migration was performed with no consideration for anisotropic wave propagation.
The single most important parameter associated with anisotropic migration is the 3D
Earth model. Note that it is not just the simple velocity model normally used in prestack
time (RMS) or prestack depth (INTERVAL) migrations. This model has at least three, and
up to five, interrelated parameters.
The best known elements of this five-member set are the sound speed, determined
through iterative migration velocity analysis, and the well-based or true depth velocity
field. Frequently, these two fields are considered to be independent and totally
unrelated, but the theoretical facts are completely out of phase with this concept. In fact,
these two fields are the most important aspects of what is required to produce migrated
images that exactly tie the wells.
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While the two velocity fields are necessary, they are not sufficient to complete the
process. In addition, we must also determine how these two fields are related to
accurately image the recorded data at the precise subsurface location from which they
were reflected. In the sections on velocity analysis and velocity model building, we
develop and discuss the data, workflow, tools, and concepts necessary to construct the
entire Earth model.
There is no doubt that there are still many geophysicists who believe that true depth
imaging is not possible and will never be possible. What we argue is that all of these
approaches have their place, but in the final analysis, the optimum approach must
incorporate the full anisotropic model to achieve true depth conversion at all dips.
Integration of all available data is key and must be performed accurately for this to
produce high quality results.

Anisotropic Earth Models

Estimating an anisotropic Earth model is not easy. In the best case, the seismic data on
which anisotropic parameters are based contain the necessary information to facilitate
accurate velocity estimation. However, since this is not likely to be the case, we must
make do with what we have.
Figure 11-1(a) is a graphic of why normal seismic velocity analysis does not generally
provide an Earth model suitable for accurate depth imaging. The blue ray fronts indicate
that the lateral velocity is faster than the vertical velocity shown in magenta. Semblance
analysis tends to produce estimates of the lateral velocity variation and not the vertical
variation. That is, in the specified Earth model used to compute the ray fronts, the
magenta ray fronts are not present, so when velocities are estimated, the resulting
interval velocity will be more proportional to the faster lateral sound speed. So long as
we use a short spread analysis, as specified by Figure 11-1(b), our Earth model velocity
field will be too fast. Nevertheless, it normally provides us with excellent images and a
velocity field that can be used to estimate 𝛿 in conjunction with a suitable well field.
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Figure 11-1. Anisotropic Ray Fronts and Short Spread Semblance Velocity Analysis

(a). Anisotropic ray fronts
(b). Short spread semblance velocity

analysis
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The Anisotropic Earth

Figure 11-2(a) shows conclusively that the Earth we know and love is definitely
anisotropic. What we see in this figure is a comparison between an isotropic and
an anisotropic migration of a small piece of a seismic section and well as a direct
comparison to to data from a VSP-CDP transform section. The 3D vertical seismic
profiles (VSPs), as shown in Figure 11-2(b), could provide virtually all of the additional
anisotropic parameters in cone relative to the central well location. As shown in
Figure 11-3, VSPs provide a superb approach for tying surface seismic data to reflecting
horizons and are perhaps one of the best methods for both recognizing and proving the
existence of anisotropy in real rocks. Unfortunately, VSPs provide information about
anisotropy only at a relatively sparse set of well locations. To construct full wide area 3D
anisotropic modes necessitates that we find methods for using recorded seismic data to
extend the estimation area.

Figure 11-2. Vertical Seismic Profiles and Their Use in Depthing

(a). VSP-CDP transform, anisotropic versus
isotropic migration (b). 3D VSP after imaging
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Figure 11-3. VSP tying surface data to reflecting horizons
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Anisotropic Normal Moveout

Today we know that the Earth is mostly anisotropic. When we estimate velocities in the
isotropic case, we are trading offset information for what we think is vertical velocity.
In an anisotropic world this necessarily implies that we are estimating angle dependent
sound speeds and as a result we should not expect to produce images that match
our wells in any form or fashion. We also should not expect our traditional isotropic
velocity analysis to completely flatten common-midpoint gathers. Figure Figure 11-
4 demonstrates what happens when we do. Here we see the so-called hockey sticks so
prevalent in anisotropic media. In the past these patterns were usually muted off so as
to improve overall image quality. What we really should have done was to try to figure
out how to use this information to produce more accurate subsurface images.

Figure 11-4. After Leon Thomsen DSC 2002. Typical hockey stick character after
application of 𝑁𝑀𝑂 using the usual stacking velocity equation without
the anisotripic term.

As we saw in the chapter on modeling, the moveout in a VTI medium is specified by the
anisotropic normal moveout equation, Equation 2-26, which has been at least partially
empirically corrected in Equation 11-1.

(11-1) 𝑡􏷡(ℎ) = 𝑡􏷡􏷟 +
ℎ􏷡

𝑣􏷡𝑛𝑚𝑜
−

(𝑣􏷡ℎ𝑜𝑟 − 𝑣􏷡𝑛𝑚𝑜)ℎ
􏷣

𝑣􏷡𝑛𝑚𝑜(𝑡􏷡􏷟𝑣􏷣𝑛𝑚𝑜 + 1.2𝑣􏷡ℎ𝑜𝑟ℎ
􏷡)
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Several important observations can be made concerning this equation. The first two
terms are identical to the equation we currently use for both time and depth velocity
estimation. Thus, we are already familiar with how they work and how we can use them
to advantage. Because the difference between 𝑣𝑛𝑚𝑜 and 𝑣ℎ𝑜𝑟 is usually small they are also
the dominant terms when the half offset ℎ is relative short.
At first glance this suggests that we can perform an anisotropic velocity analysis as a two
step process. The first step ignores 𝑣ℎ𝑜𝑟 and just estimates 𝑣𝑛𝑚𝑜. Once 𝑣𝑛𝑚𝑜 is available
a second pass through the data provides estimates for 𝑣ℎ𝑜𝑟. As we will see we can also
perform a 3D velocity analysis at each vector midpoint for a simultaneous estimate of
these important parameters.
Although known to be somewhat less statistically stable than Equation 11-1,
Equation 11-2 relates the offset dependent traveltime 𝑡􏷡(ℎ) to 𝑣𝑛𝑚𝑜 and the so-called
𝜂 parameter defined by 𝜀 and 𝛿 as Equation 11-3.

(11-2) 𝑡􏷡(ℎ) = 𝑡􏷡􏷟 +
ℎ􏷡

𝑣􏷡𝑛𝑚𝑜
− 2𝜂ℎ􏷣

𝑣􏷡𝑛𝑚𝑜[𝑡􏷡􏷟𝑣􏷡𝑛𝑚𝑜 + (1 + 2𝜂)ℎ
􏷡]

(11-3) 𝜂 = 𝜀 − 𝛿
√1 + 2𝛿

As was the case for Equation 11-1, once 𝑣𝑛𝑚𝑜 has been determined, 𝜂 can be estimated
through a semblance-based process similar to the familiar stacking velocity analysis used
to find 𝑣𝑛𝑚𝑜.
These two formulas can also be used in what you might call a simultaneous inversion for
either 𝑣𝑛𝑚𝑜 and 𝑣ℎ𝑜𝑟, or for 𝑣𝑛𝑚𝑜 and 𝜂. What is different is that the semblance panels are
3D volumes of two of the parameters and time.
Figure 11-5 is after Tsvankin (2001), where (a) shows an anisotropic arrival curve from
a VTI media, and (b) shows the contours of a semblance analysis at 1.0 seconds; in this
case, an estimate of 𝑣ℎ𝑜𝑟 = 2.3 and 𝑣𝑛𝑚𝑜 = 2.0 is quite realistic. Part (c) shows that a value
of 𝜂 ≈ .16 would not be completely inappropriate.
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Figure 11-5. Estimating Vnmo and Vhor

Figure Figure 11-5 provides a simple glimpse of the 𝑁𝑀𝑂 based inversion process. Part
(a) shows a single arrival from a reflector embedded in an anisotropic medium. The zero-
offset time 𝑡􏷟 of this reflector is 1 second. In this case, the model 𝑁𝑀𝑂 velocity is 2.0
meters/second, the model horizontal velocity, 𝑣ℎ𝑜𝑟, is 2.3 kilometers/second and the 𝜂
of the model is 0.16. Part (b) shows a slice at 1 second through a 3D 𝑣𝑛𝑚𝑜 − 𝑣ℎ𝑜𝑟 velocity
analysis of the data in part (a). Clearly, values of 𝑣𝑛𝑚𝑜 = 2.0 and 𝑣ℎ𝑜𝑟 = 2.3 kilometers per
second are reasonable choices. Part (c) shows the similar panel for 𝑣𝑛𝑚𝑜 and 𝜂. Since 𝑣𝑛𝑚𝑜
is known from part (b) choosing 𝜂 = 0.16 would not be out of line.
Following the process described above yields three parameters, 𝑣𝑛𝑚𝑜, 𝑣ℎ𝑜𝑟 and 𝜂. Because
𝜂 is defined in terms of 𝜀 and 𝛿, we must find some process which allows us to find either
𝛿 or 𝜀. Once determined, we will have achieved the first step in developing a model that
describes compressional wave propagation in an anisotropic medium. A quick review of
the section on Thomsen parameters reveals that
(11-4) 𝜀 ≈ 𝑣ℎ𝑜𝑟

𝑣𝑃􏷟
− 1

Thus, we need a process to determine 𝑣𝑃􏷟 so we can estimate 𝛿 algebraically. To do
so, we measure vertical velocities in a well. Although the measurements are at higher
frequencies then seismic sound speeds, these can always be modified as the need arises.
This means that we need a process for constructing a vertical well field. Once we have
that, we can construct our VTI Earth model from our 𝑁𝑀𝑂 based estimates, with the
exception of 𝛾.
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Depthing

Geophysical approaches to finding vertical velocity fields abound. Some of the earliest
were called depthing, or, perhaps more precisely, depth conversion. Depth conversion
typically begins with a careful analysis of the wells of interest.
Figure 11-6(a) shows how the overburden above the potential reservoir is separated into
different velocity units. Starting at the surface, we model the velocity behavior in layer
1 and create a depth map for horizon 1. We then model the velocity in layer 2 and hang
the depth conversion from the depth horizon we already have for horizon 1. We repeat
the process for each layer until we reach the maximum depth desired.

Figure 11-6. Analyzing wells for unitized velocities

(a). Separating overburden into velocity
units (b). The overall average velocity

(c). The average interval for each unit (d). Instantaneous velocity in each unit

Figure 11-6 shows the typical approach to analyzing wells to determine a well or
depthing velocity structure. The graphic in (a) of this figure presents the standard
process. The well is separated into overburden units or well tops of horizons of interest.
Each of these units can then be converted to depth. Analysis of each such unit can be
simple, as indicated in Figure 11-6(b), or more complicated as indicated in (c) and (d).
The more accurate approach is clearly represented by Figure 11-6(d).
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Depending on the complexity and strength of the velocity variation within the well, we
can minimize the number of depth units. Figure 11-6(b) shows the simplest technique
using a single average velocity. We ignore the layering just described, and compute an
average velocity from the surface to the target horizon. This has the advantage of being
simple and quick to implement, but has the disadvantage that, since the behavior of
the subsurface is not fully modeled, our confidence in the predictions may be reduced.
This is a good domain for viewing stacking velocities, because they have seen all of the
overburden anyway.
Moving to a more sophisticated approach in Figure 11-6(c), we look at interval velocity.
Here, we assign a constant velocity to each layer. This velocity may vary spatially from
well to well. We can model this by cross plotting interval velocity versus midpoint depth,
for example, or we can contour the well interval velocities, perhaps geostatistically using
our seismic processing velocities as a guide.
An even more sophisticated approach, as shown in Figure 11-6(d), is the use of
instantaneous velocity functions. Here we are modeling the detailed velocity variation
with depth on a layer-by-layer basis. The most commonly used relationship is the linear
increase of velocity with depth (the V0Kz method), although modern software packages
can handle any function, as shown in the third layer. Any of the parameters in these
equations can be represented by grids, thus allowing full flexibility.
Constructing complex horizon-based models can be quite difficult. Figure 11-7 illustrates
several requirements for different geological settings. What is important is to recognize
that in a horizon-based model building exercise, we must interpret many more horizons
than is usually necessary for exploration purposes. Moreover, many of the additional
horizons have zero prospectivity and, consequently, are of little interest to interpreters,
although these layers can be extremely important for depth imaging.
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Figure 11-7. Complex model construction
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Horizontal velocity trends are thought to be linked with vertical velocity trends.
Thus, using trends from the prestack depth migration velocity analysis can be used to
statistically interpolate sparse well data sets. Figure 11-8 is an example velocity slice
from a seismically derived Earth model. It could serve to define trends for extrapolating
sparse wells to construct a detailed well field.

Figure 11-8. Seismic derived velocity slice.

Horizons, like those in Figure 11-9(a), can be used to guide the interpolation process
in a horizon consistent in a lap or off lap manner. If we decide that the subsurface
geology follows the structure defined by the given horizons, a suitable projection of this
estimated velocity functions on to a grid of locations defined by the user will produce a
structure tracking velocity field.
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Figure 11-9. Single Well Velocity Field

(a). A multiple horizon model (b). A single well at the indicated location

(c). Projected horizon tracking wells (d). A slice through the constructed model

(e). Extracted RMS with interval velocity
overlay (f). Final Well field
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In Figure 11-9(b), a single well, at the location indicated by the arrow, is interactively
projected into the three-dimensional grid. After projection, we have logs at an evenly
sampled grid of surface locations, Figure 11-9(c). In this case, projection was based on
shrinking and stretching the single input function to track the given horizons.
Figure 11-9(d) is a slice through the projected well field, while Figure (e) shows RMS
velocities calculated from the well field. In a sense, this process reverses the usual
process of estimating interval from RMS velocities. Figure (f) is a contoured version of
(d) showing how the actual projection was performed.

A VTI example

Here we present an example of what one might expect from the analysis process
discussed above. Figure 11-10 shows a vertical velocity (𝑣𝑃􏷟) field in (a) and a 𝑣𝑛𝑚𝑜 field
in (b). Because it is so similar to the vertical field the horizontal field 𝑣ℎ𝑜𝑟 is not shown.
What we know from the previous analysis is that

(11-5) 𝜀 ≈ 𝑣ℎ𝑜𝑟
𝑣𝑃􏷟

− 1

In this case, the 𝜀 volume is shown in Figure 11-12(b). Given Equation 11-6, we can
easily solve for 𝛿, thereby producing a complete three-dimensional volume. The result
is shown in Figure 11-12(b).

(11-6) 𝜂 = 𝜀 − 𝛿
√1 + 2𝛿
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Figure 11-10. Well and NMO Velocity Volume

(a). Estimated well velocity field
(b). Estimated short-spread MVA NMO

velocity volume

Figure 11-11. The 𝜂 volume as estimated along with the 𝑣𝑛𝑚𝑜 volume using
Equation 11-2.

Chapter 11. Anisotropic Velocity Analysis 321



A VTI example Panorama Technologies

Figure 11-12. 𝜀 and 𝜂 volumes

(a). The estimated 𝜀 volume. (b). The estimated 𝛿 volume.
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Chapter12
Case Studies

This chapter presents several case studies showing the effects of various operational
conditions.
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Salt Flood and Body Insert

Figure 12-1 shows several examples of using short-offset salt floods to quickly determine
the top and base of complex salt structures. In this case, the offset was limited to 1000
meters and a common azimuth algorithm was used to produce the image.

Figure 12-1. Short offset poststack salt Floods.

(a) (b)

(c) (d)
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Each of these snapshots is from a Gulf of Mexico salt structure province and indicates the
kinds of problems and issues that arise in this setting. Note that interpreting the top and
base of salt is quite easy here, but that is not always the case. A major unsolved problem
concerns why the salt base is not always visible.
Figure 12-2 shows a full volume image of a Gulf of Mexico salt structure after completion
of detailed MVA and salt body insert. In this image, the salt base and sub-salt sediments
are clearly imaged.

Figure 12-2. Full prestack Kirchhoff volume after salt body insert.
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Comparing Figure 12-3(a) with (b), we observe excessive aliasing of the common
azimuth section. This is very likely because the processor failed to properly assess and
limit the input frequency content.

Figure 12-3. Wave Equation Aliasing

(a). Kirchhoff prestack xline image from the
volume in Figure 12-2

(b). Common azimuth xline image from the
volume in Figure 12-2
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The two graphics in Figure 12-4 show that defining salt body shapes precisely when two
salt structures almost overlap can be quite difficult.

Figure 12-4. Multi-level salt structures
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Salt structures, like the one in Figure 12-5, are relatively easy to image with single
arrival Kirchhoff migrations. This is mostly due to the rugosity of the top of the salt.

Figure 12-5. Deep water laminate salt Kirchhoff imaging.
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Amplitude Preservation

Figure 12-6 shows the relative amplitude differences between a full Kirchhoff migration
(left) and a one-way phase-screen prestack depth migration (right).

Figure 12-6. Kirchhoff versus one-way shot profile offshore Florida
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Which One Should I Use?

Figure 12-7. Inline slices through impulse responses

(a). Kirchhoff (b). Poststack (c). One-way
(d). Common

Azimuth
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Figure 12-8. Crossline Slice Through Impulse Responses

(a). Kirchhoff (b). Poststack (c). One-way
(d). Common

Azimuth

Figure 12-9. Depth slice through impulse responses

(a). Kirchhoff (b). Poststack (c). One-way
(d). Common

Azimuth
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Land Data PSTM Versus PSDM Comparison

Figures 12-10, 12-11, 12-12, and 12-13, are examples from a 3D land survey near
Daxing, China. What they all show is that wave equation migration is generally better
at fault definition than single arrival based Kirchhoff methods. It is also much better at
amplitude preservation, even when, as in the one way case, it is not perfect.

Figure 12-10. PSTM (top) versus PSDM (bottom) on land data near Daqing China

332 Modeling, Migration and Velocity Analysis



Panorama Technologies Land Data PSTM Versus PSDM Comparison

Figure 12-11. PSTM (top) versus PSDM (bottom) on land data near Daqing China
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Figure 12-12. PSTM (top) versus PSDM (bottom) on land data near Daqing China
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Figure 12-13 shows that when the data is over tertiary soft rock geology, the difference
between various migration algorithms can be small. While certain parts of the top figure
are better than the bottom figure, seeing the differences requires a sharp eye.

Figure 12-13. Curved ray PSTM versus Straight Ray on land data near Daqing
China

(a). Curved Ray Kirchhoff PSTM

(b). Straight Ray Kirchhoff PSTM
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Autopicking PSTM

Figure 12-14 shows an image based on automatically picked velocities. In the image, the
chase was the initial iteration of the imaging project.

Figure 12-14. Automatically picked and imaged PSTM
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Tomography

Figure 12-15. A comparison of imaging with and without tomography

(a). Before tomography (left) and after
tomography (right) (b). Before tomography

(c). After tomography
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South Texas Fault Shadow

Figure 12-16(a) is a Kirchhoff PSTM that revealed a severe fault shadow imaging
problem. Figure 12-16(b) shows that, while depth migration has generally improved the
overall imaging quality, it has not completely solved the problem.

Figure 12-16. South Texas fault shadow

(a) South Texas fault shadow PSTM

(b) South Texas fault shadow PSDM
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Blessing Texas Case Study

The availability of a small 3D Southeastern Texas Gulf of Mexico survey provided an
excellent data set for directly comparing single arrival Kirchhoff migration with the
much more computationally intensive full waveform reverse time migration. This study
concluded that while there is an almost imperceptible difference between vertical time
or depth sections, a high resolution fault analysis indicates that the more accurate
method produces much higher resolution results. That this is the case, even when neither
the geology nor the velocity model indicates any significant lateral gradients, is a bit
surprising.
Figure 12-17 is a graphic montage depicting a 3D seismic survey acquired in the late
1980’s or early 1990’s near the town of Blessing in the state of Texas in the USA. The
graphic in (a) shows the approximate location of the survey, (b) shows the CDP locations
and fold, (c) shows the shot locations, and (d) shows an example shot where each shot
was acquired by eight lines of receivers. There were approximately 1080 receivers per
shot, and there were approximately 4265 shots. There are approximately 4,200,000 total
traces in this survey.
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Figure 12-17. Description of a 3D seismic survey Southwest of Houston near
Blessing, Texas

(a). Blessing, Texas 3D survey location (b). 3D CDP locations and Fold Map

2

(c). Shot location map
(d). Example shot record with 8

receiver spreads
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The migration in Figure 12-18 was one of the first done on the Blessing data. The target
is indicated by the yellow square and the question was whether or not this clearly
faulted zone contained one or two faults. A secondary question focused on whether the
black square does or does not contain a continuation of the fault entering the square at
the lower left corner.

Figure 12-18. A early Kirchhoff prestack depth migration of the Blessing data
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Figure 12-19(a) shows a straight ray time migration using the first iteration of velocity
analysis, while (b) shows the second iteration result. Each of these initial iterations were
performed using a semblance-based automatic picking routine. Figure 12-19(c) shows a
curved ray PSTM with the final interval velocity volume. Part (d) is different because it
used a migration algorithm that selected a velocity function at the source and another
velocity function at the receiver to estimate the required traveltimes.

Figure 12-19. Four prestack time migrations of the 3D Blessing data

(a). Straight ray Kirchhoff with first velocity
model

(b). Straight ray Kirchhoff with second
velocity model

(c). Curved ray Kirchhoff with final velocity
model

(d). Curved ray SR Kirchhoff with final
velocity model
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To ensure the highest possible velocity accuracy, tomography was applied to the Blessing
data set. The before and after common image gather comparison in Figure 12-20
demonstrates that the painless velocity update method was sufficient to ensure high
quality imaging.

Figure 12-20. A before and after comparison of tomography
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The images in Figure 12-21 represent the final depth-interval velocity volume and the
final Kirchhoff maximum energy depth image at approximately line 1466.

Figure 12-21. Blessing Velocity Model and Kirchhoff PSDM

(a). Blessing interval velocity model
(b). Kirchhoff depth migration using the

model in (a)
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The key points of the images in Figure 12-22 are that, when viewed in sectional form,
there appears to be little difference between the Kirchhoff single arrival in (a) and the
much more computationally intensive reverse-time migration in (b). However, when
viewed purely as depth slices, as in (c) and (d), the differences between the two methods
are clear.

Figure 12-22. A Kirchhoff and Two-Way PSDM Comparison

(a). Kirchhoff PSDM and depth slice (b). Two-way PSDM and depth slice

(c). Kirchhoff depth slice (d). Two-way depth slice
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A high resolution fault analysis was run on both the Kirchhoff migration and the
two-way volumes to verify the preliminary conclusion that the two-way method is of
considerably higher resolution. A visual comparison of Figure 12-23(a) with Figure 12-
23(b) confirms this basic hypothesis.

Figure 12-23. A high resolutions fault analysis of depth slices from a Kirchhoff
migration and a full two-way 3D migration of the Blessing survey

(a). Fault analysis for Kirchhoff depth
slice

(b). Fault analysis for two-way depth
slice

Figure 12-24 is another high-resolution fault analysis at a slightly different depth. The
two-way still shows much higher resolution than the Kirchhoff.

Figure 12-24. A high resolution fault analysis of a second set of depth slice from
the Blessing data volume.
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Data Mapping through AMO on the Blessing data

In this section, we consider the utilization of AMO as a data mapping technique. The
idea is to construct large aperture rectangular densely sampled shots from either narrow
azimuth or widely spaced receiver lines. Figure 12-25(a) shows an AMO based process
for construction of large densely sampled areal array shots from otherwise narrow
azimuth or widely spaced receiver arrays.

Figure 12-25. Regularization of land data to form a 3D wide azimuth shot.

(a). AMO as data mapping to regularize a
3D shot (b). Objective fault image

(c). AMO regularized 3D shot (d). Migrated regularized shot
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AMO in either FK, as described in previous sections, or in integral form as described by
Biondi, et al., can be used to directly construct output volumes of any offset and any
azimuth. This can be done trace by trace or by computing all volumes at once. In any
case, the data is sorted into common shot volumes and migrated shot by shot. Each
migrated shot is a full 3D volume and, according to theory, should provide a superior
image. Part (b) of this figure is a simple reminder of the fault that we wish to image.
Part (c) shows a slice through a 3D rectangular and densely sampled shot generated to
provide a reasonable image of the fault in (b). Part (d) shows that this process, at least
for this land data set, is quite successful. There is no doubt that the fault is imaged quite
well.
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Chapter13
Course Summary

The best one line summary I can give to modern seismic imaging is to get the best image,
use the most accurate technology you can afford.
We can discuss the pros and cons of the various algorithms forever, but in my opinion,
this comment is the only one that should be remembered.
On the other hand, attaining this goal usually requires starting at the lower end of the
accuracy level and moving up the chain until the best possible image is obtained. Each
step through this process increases the information content and also improves the quality
of the estimated Earth model. Thus, the first step in any imaging project is a prestack
time migration. This is generally followed by a Kirchhoff depth imaging exercise that
leads quite naturally to a one-way wave equation method. Because of its inherent speed,
common azimuth is usually the first one-way method to be applied. It is normally not
until after the net improvements of the one-way techniques have been reached that
expensive full waveform imaging is attempted.
However the process begins, depth imaging should be standard processing at the end
of the process, and the final focus should be on estimating a full elastic Earth model.
Hypothesis testing through modeling should be employed to answer questions that
imaging alone cannot resolve. Modeling and migration are a necessary part of all
exploration exercises.
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