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Preface

This book presents a hierarchy of modeling, migration, and inversion algorithms in a
geometrical rather than a mathematical sense. The focus is on using simple geometrical
concepts and graphical displays to explain how modeling works, how migration is in
reality just a different way of doing modeling, and why true full waveform inversion
must ultimately be a sequence of migrations of differences between synthetic and

real data. While we do not shy away from purely mathematical explanations of the
technology, the idea is to attempt to present the material in a manner accessible to the
widest possible audience.

After presenting the fundamental concepts, we turn our attention to a thorough
understanding and comparison of the myriad of modeling and migration algorithms.
Again, the major interest is not on the mathematical details but on a visual comparison
of a large number of examples and case studies.

In addition to practical comparisons, we also attempt to ensure that you get a reasonable
understanding of how modern advanced technologies can be applied to reduce
exploration risk. This necessarily includes an overview of the best approaches to
producing the best possible result from any given migration or modeling algorithm. This
necessarily implies a focus on techniques for estimating the underlying Earth model so
necessary for producing accurate images.

The course underlying this book was initially developed as a tutorial for seismic
interpreters working to identify, map, and develop potential hydrocarbon filled traps.
Working on the extremely practical side of the exploration process, seismic interpreters
have very little incentive to focus on the more mathematical aspects of how seismic data
is imaged. Thus, this book is aimed at an audience with some familiarity with seismic
images and their explanation relative to the underlying geology. Hopefully, you will
learn where and when to use the right applied technology to produce the best possible
exploration result.
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Chapter

Introduction

The word migration as it applies to seismic imaging is definitely a misnomer. It is
believed to have arisen because oil migrates up dip since it is less dense than water.
This knowledge proved to be exploration dynamite. Once understood, explorationists
exploited it by looking for anticlines rather than synclines—and the California fields
around the Brea tar pits became history. Analogously, dipping events on unmigrated
seismic sections move up-dip on the final imaged or migrated section, so using the term
migration in place of the more accurate imaging terms was quite natural.

It is also quite natural to think of seismic migration as being somewhat akin to
photographic imagery. An image is captured, either digitally or on film, by recording
the result of passing a reflected source of light (the sun or artificial light) through a
properly focused lens on a photographic plate, film, or charge coupled device (CCD).
This works because light travels in a straight line at a known constant speed and the
lens, when focused, refracts the light to collect it in the proper place on the plate or CCD.
We can think of this process in three steps. First, the light wavefield travels out from the
source in all directions until it strikes a non-transparent reflector. Second, the reflected
wavefield passes through the lens to form the image. Third, the camera’s shutter
captures an instant in time to record the final image. It is safe to say that radar imagery
operates in much the same way and the only real difference lies in the construction of
the “lens.”

However, seismic migration differs from the photographic process in many ways. Sound
replaces light (or radar or electro-magnetic sources) as the imaging source, and the speed
of sound in subsurface rocks is definitely not constant, and it cannot be assumed to travel
in a straight line. Moreover, as we will see later, each and every sound source, regardless
of type, may generate three different, but coupled, wavefields as the energy spreads. As
far as the author knows, there is no simple seismic analogy to the photographic lens.
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Perhaps a better way to say this is that the lens for each seismic imaging effort is
essentially unique to that effort. In a sense, this observation is the most crucial difference
between imaging with sound and imaging with light. In the former case, we must
somehow estimate the lens during the seismic imaging process. This lens is called the
Earth model. In its simplest form, an Earth model is a three-dimensional velocity field
that describes the subsurface speed of a compressional sound wavefield. In simple terms,
a compressional wave is one wherein the particle motion occurs along the direction of
propagation and represents a compression followed by a rarefraction of the particles. In
its most complex form, an Earth model also includes the sound speeds of two additional
waves called shear waves because the particle motion is perpendicular to the direction
of propagation. An Earth model may also include other rock properties that influence
the way in which sound propagates through the earth, but those will be of little interest
here.

Seismic imaging can be considered to be a data-processing technique that creates an
image of the earth’s structure from the data recorded by a seismic reflection survey.

Target audience

This book and the complementary course are intended for an audience that requires

a less mathematical understanding of migration and modeling than what might be
required of advanced graduate students and researchers in the field. In the author’s
mind, this includes geophysicists and geologists who desire a fundamental principles
understanding of these topics as well as a practical perspective as to where and how they
may be applied for exploration advantage. We hope that, in spite of this objective, you
come away with a much broader understanding of both modeling and migration as well
as their application in the development and estimation of the Earth model.

Overview

Because modeling, as highlighted in this book, is so central to our ability to image, we
emphasize our reasons why we believe it should become a key component to any and all
exploration projects. For this, we rely on early (1936) modeling work by F. Rieber, as
well as recent work by Carl Regone, J.T. Etgen, and others from British Petroleum, and
the 2005 SEG Summer Research Workshop in Salt Lake City, Utah.

Three types of Earth models characterize the propagation of sound waves in the
Earth. Such models range from an overly simple acoustic model, which only supports
compressional waves, to anisotropic models that also support two coupled shear
waves. Acoustic models are sometimes also referred to as isotropic models, but we
will reserve that designation for isotropic elastic models. An isotropic elastic model

2 Modeling, Migration and Velocity Analysis
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supports both compressional and shear waves, but the velocity of these waves is
independent of the propagation angle. When the propagation velocity varies as a
function of angle, the Earth model is said to be anisotropic. Anisotropic Earth models
support one compressional and two shear waves. Thus, anisotropic Earth models contain
three velocity models: one for the compressional wave, and one for each of the shear
waves. Although we can think of anisotropic models in terms of three velocity fields, you
should be aware that connections between the three propagation fields can be extremely
complex.

The book will briefly consider sources other than sound, but since they focus on seismic
migration, we ultimately are only interested in acoustic sources.

Defining the sound source and explaining its utilization to measure a synthetic seismic
experiment may be the most important component of this book. We use Newton’s second
law in conjunction with Hooke’s law to produce simple propagation equations that allow
us to explain a significant percentage of the rather large number of migration algorithms
that exist today.

At its best, the current ad-hoc approach for developing an acceptable seismic Earth
model for imaging purposes rarely provides the necessary reflectivity required by
modeling. What appears to be lacking is an understanding of how the seismic image
relates to this reflectivity, so we emphasize how the needed reflectivity might be
obtained.

The mathematics underlying modeling also underlies migration and, consequently, has a
major impact on the acquisition geometry. The kind of data we should acquire versus the
kind of data we have historically acquired is discussed in terms of optimizing migration
quality.

In the belief that understanding migration is facilitated by first focusing on the simplest
forms of migration, we briefly review rather quaint stacking and dip correction
approaches for the production of so-called zero offset sections. We then use poststack
imaging methods as they apply to stacked data sets to compare several algorithms from
what we define as the migration hierarchy, and finally we move on to more modern
prestack methods. These methods are applied to a wide variety of real and synthetic data
in a visual, subjective attempt to evaluate the migration hierarchy’s ability to produce
high quality images.

Because of its clear importance, modern velocity analysis is explored in some detail.
We review three different approaches producing the kinds of migration output that
facilitate velocity analysis and estimation of Earth models. We provide a short review
of tomographic updating. Finally, we demonstrate the conditions under which full
waveform inversion might be expected to produce high quality results.

The book ends with a series of case studies designed to demonstrate the relative accuracy
of the various algorithms comprising what we call the migration hierarchy.

Chapter |. Introduction 3
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Inversion

Estimating the appropriate lens for seismic migration is an exercise in inversion. This is
a mathematical process by which data are used to generate a model that is consistent
with the data. The most desirable outcome of a seismic inversion process would be an
Earth model with sufficient detail to describe all information necessary to optimize the
exploration workflow. The most comprehensive mathematical formulation of inversion
provides a complete platform for estimating this information. The inversion technique
iteratively combines modeling with migration to directly estimate the Earth model. At
each step of what may be many iterations, the difference (the residual) between the
modeled data and the recorded data is migrated to estimate a new model. When the
migrated residual is zero, synthetic data generated using the estimated Earth model
perfectly matches the recorded data and consequently the model is considered optimal.

One of the earliest practical tests of this so-called full-waveform inversion was an
abysmal failure. Nevertheless, today, the good news is that, in a perfect setting, this
process really does work. The bad news is that currently available seismic data do not
entirely satisfy the mathematical requirements necessary for success.

Until recently, the modeling piece of this inversion process was by itself considered

far too computationally intensive to be practical. It may also be true that the actual
concept of synthesizing data over some perceived geologic model was considered to be
of little practical use. However, computer power is rapidly approaching the point where
modeling may not only be practical, but may even be of use in providing empirical
answers to questions that are difficult to answer in any other way. While it may not be
computationally possible to perform the iterative inversion described in the previous
paragraph, computer power is quickly reaching the point where we may be able to
consider doing the inversion for carefully selected projects.

Velocity Analysis

When concise mathematical recipes for optimal estimation of the Earth model are not
practical, other more practical methods must be devised and exploited. In the last
twenty-five years, a wide variety of somewhat ad-hoc velocity estimation methods
have emerged and are currently used to provide reasonable estimates of the seismic
lens. The importance of migration as a tool in this approach cannot be overestimated.
But traditional, normal-moveout based methods applied after migration, together with
tomographic techniques, have proven to be quite useful when the more optimum and
concise methods fail.

How well these human-intensive techniques work are somewhat dependent on how the
input data is processed. Thus, the person actually attempting to estimate the Earth model
must recognize that some so-called “best practices” approaches are not amenable to the
production of high quality results.

4 Modeling, Migration and Velocity Analysis
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Modeling

A superficial glance at the inversion process seems to imply that we need two pieces of
machinery to make it work; that is, we need to understand how to synthesize the kind
of data we record (modeling), and we need to understand how to migrate it. What is
really true, however, is that the only thing we really need to understand completely is
how to perform the modeling, since migration is actually just two independent modeling
exercises. To fully appreciate how modeling appears in the imaging process requires
considerable mathematical theory and physical principles. However, there are just two
fundamental principles on which modeling is based. The first, Newton’s second law, is
easily understood from a purely physical point of view. You experience it every time you
accelerate in a car. The second, Hooke’s law, is somewhat more difficult to understand,
but is still quite easy to explain in simple one-dimensional terms. The combination of
these two principles effectively provides us with a simple propagation methodology

that is easily explained graphically and that provides the basis for making modeling and
migration accessible with minimal mathematical symbolism.

Given that modeling is fundamental to seismic imaging, we obviously must put
considerable emphasis on understanding how it works and the many variations of how
it is implemented. In addition, it is of considerable interest to understand the types and
style of Earth models that we may wish to investigate.

Chapter |. Introduction )
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Chapter 2

Seismic Modeling

This chapter presents information about seismic modeling. Topics range from why we
perform modeling in the first place through a brief overview of the mathematics involved
in several different types of modeling.

Primary Concerns

One primary concern in seismic imaging necessarily focuses on determination of the

true subsurface medium. Clearly, the accuracy of this information significantly impacts
all aspects of the exploration process. Even when we do not have a completely detailed
visualization of what is below us, a reasonable concept can provide guidelines for surface
acquisition that improves subsurface imaging. The underlying Earth model strongly
influences what we must do to migrate the data successfully and produce an optimum
image.

Another primary concern focuses on which of the myriad available imaging algorithms
has the best chance of producing the highest quality image. Making this choice
requires an understanding of the most important such technology. Because algorithm
development and implementation is a highly mathematical endeavor, acquiring this
understanding can be quite difficult.

A third concern arises from the fact that, in general, the Earth does not respond well to
high frequency sources since high frequency sound waves are absorbed rather quickly.
Depending on rock type they penetrate only to a few thousand meters. On the other
hand, low frequency sound waves are known to provide narrow bandwidth images at
depths in excess of 30 or 40 kilometers.

Electromagnetic waves are frequently characterized by their penetration depth or
their so called skin temperature. Although claims to the contrary abound, the skin
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temperature of most electromagnetic waves is only on the order of a few hundred
meters. This means that to the extent possible, changes in magnetic parameters can

be observed only from approximately half of this depth. This is far too shallow to be

of much use in exploration. This lack of ability to penetrate deeply into the Earth’s
interior eliminates most high frequency sources, and strongly implies that we cannot use
light, electromagnetic, or radar sources to measure and image the Earth at the depths of
interest.

Because of these issues, our best option is to use relatively low frequency sound sources
on the order of a few hundred Hertz. When higher frequency sources are routinely
available, their responses will be easily incorporated into the general imaging workflow,
but until that happens, we must focus on low frequency data sets to achieve our
exploration goals. We now know that, from an inversion point of view, accurately
determining the subsurface velocity is easier when the low frequency portion of the
frequency band is full. High frequencies are certainly important but have much less
impact on the velocity estimation problem then lower frequencies. While somewhat
contrary to intuition, the importance of very low frequency data cannot be denied.

Perhaps the final concern in seismic imaging is having a clear understanding of how
sound propagates. Given a decent understand of the types of rocks we may encounter,
this concern can be resolved directly through seismic synthesis or modeling. The ability
to generate realistic responses to practical and physical seismic sources should move us a
long way down the path toward near optimal application of the entire imaging process

Given these simple concerns, this section attempts to use mathematically based
formulations for digitally synthesizing seismic data in the hopes that the issues raised
above can be clarified in a relatively simple and intuitive manner.
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Three Earth Models

Earth models, as we understand them, have the following three basic formulations:

e purely isotropic or acoustic
e isotropic elastic
e anisotropic

Acoustic or Fluid

Earth models, as we understand them, have three basic formulations. The first is

what we usually call purely isotropic or acoustic. Acoustic models are based on the
assumption that the only physical parameters defining wave propagation are density,
p(x,y,z), and interval or instantaneous velocity v(x,y, z). Only fluids can be described by
these two properties, but because propagation in such environments can be simulated
efficiently, they are the most prevalent at this writing. Empirical evidence also seems

to suggest that in many geologic settings the real Earth does not vary much from this
assumption.

Isotropic Elastic

Isotropic elastic models are described by density, compressional velocity, and shear
velocity. The notation for these parameters is p(x, y, z), v,(x, y,z), and vy(x, y, z). Isotropic
elastic models support two wavefields, one of which is a compressional wave and the
other is a shear wave. Compressional waves in such models are identical to those in
acoustic models. They are characterized by particle motions consistent with what might
be called compression and rarefaction where the particle vibrations are normal to the
direction of propagation. In contrast, we tend to think of waves where the the particle
motion is tangential to the direction of propagation as shear waves. As a point of fact,
the truth is probably somewhat different. Simulations tend to support the conclusion
that the compressional wave is what we would record if we were to measure purely
vertical particle motion and the shear wave is the one characterized by purely horizontal
particle motions. The speed of shear waves is frequently much slower then the velocity
of the compressional wave. Nevertheless, shear and compressional waves continually
interact and convert from one to the other as the propagation progresses. Thus, if we
are to successfully handle isotropic elastic data, we must acquire something at least
directly related to the vertical and horizontal particle motions. In other words, we have
to acquire vector data.
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Anisotropic

Anisotropic models represent the Earth at its most complex. For our purposes, a

model is said to be anisotropic whenever the sound speed is a function of the angle

of propagation. In models of this type, not only does the velocity of sound vary with
propagation angle, but there are three possible propagating modes at any given instant.
One is our familiar compressional wave and the other two are shear waves, each of
which propagates with its own local angle-dependent velocity profile.

Over the last 20 or so years we have come to specify what we might call the first
realistic anisotropic models by density p(x,y, z), vertical velocity 0,(x, ¥, 2), shear
horizontal velocity v,(x,y,z) and three additional parameters, 6(z,v, z), €(x,y, z), and
y(x,y,z) . Models described by these “Thomsen” parameters are the so called vertically
transverse isotropic or VTI models. Anisotropic VTI models have a very convenient

form of symmetry that makes using them somewhat easier and less computationally
complex then more complex versions of anisotropy. It is reasonable to expect anisotropic
models to become the norm in future exploration exercises. In this case true anisotropic
processing will also require the acquisition of vector data. The difference between this
and isotropic elastic acquisition is that each vector has three components.

Summary

Regardless of the source we use, the Earth’s response always contains compressional and
at least one, but most probably, two shear wavefields. Thus, the expected Earth model is
quite complex. While we may not have the ability to estimate the necessary parameters
to image the recorded multicomponent data, there are many algorithms for doing so. It
makes sense to at least understand the kinds of data we might expect to record and what
it might look like. The basic idea of using modeling to help us understand the recordings
has a significant history in the exploration for hydrocarbons. As this book progresses, we
will attempt to define the various models currently in vogue and make some additional
comments about how the required parameters might be estimated from our acoustical
recordings.
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Seismic Acquisition: The Basic Idea

The basic idea underlying seismic acquisition is shown in Figure 2-1. The application
of a sound source at a fixed point on the surface of the Earth produces a down-going
wavefield. As the wavefield propagates, it is, hopefully, reflected as an up-going
wavefield that is recorded on a series of receivers located near the surface. The job

of modeling is to simulate this thought experiment as accurately as possible. From

a physical point of view the model is viewed as a collection of particles that move
(compress and expand or shear) under the influence of the sound source. As we can
easily infer from Figure 2-1 such compression and rarefaction can be quite complex and
occur in any direction at any given time instant.

As we progress through this book, we will see that there are many approaches to
synthesizing seismic data in both simple and complex Earth models. Each approach is
based on a unique approximation to a governing wave equation. Each approximation has
its own unique set of limitations that compromises the accuracy of the final synthetic.

In the past, these approximations were a necessary evil fostered by the computational
limits of the era. The list of questions posed in Figure 2-1 hint at some of the limitations
of the various approximations. Ranging from algorithms based on rays (infinitely narrow
paths), to wavefields that travel in only one direction, and then to wavefields traveling
in all directions, these limitations can have a serious impact on the quality of both the
modeling and the migration algorithm under consideration. As computers become more
and more efficient, these compromises will fall by the wayside and be fully replaced by
the most accurate method available for the given data.

Figure 2-1. The basic seismic acquisition concept.

1. Create some kind of foree
— T e 2., Hecord ot w sed of receivers

3 !|ll|‘lt wi 8¢l rellections

Chapter 2. Seismic Modeling 11



Why Model? Panorama Technologies

Why Model?

Modeling is fundamental to imaging, and I hope to convince you that modeling and
migration are identical; that is, if you know how to do one, you know how to do the
other. Consequently, it is extremely important that you understand how to synthesize
seismic responses that are as close as possible to what we physically measure in the real
world.

Determining Reflector Location

Before computers, simple straight-ray methods were used to determine the important
parameters involved in figuring out the true sub-surface location of recorded reflected
events. Figure 2-2 demonstrates the process.

Figure 2-2. Raytracing in a v(z) medium.

. dx
Up

sinf), v

| |

Snell’s Law — = —
sinf, v,

Computing the ray direction from one layer to the next requires adherence to Snell’s
law, Equation 2-1 or Equation 2-2. See the section on Curved Rays in Chapter 3 for
information about Snell’s law.

(2_1) sin 61 _ ﬁ
sinf, v,
(2-2) sinf; sin0,

(%1 (%)
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Thus, the only required elements for this form of modeling are the ability to compute the
sine of angles, a ruler, and perhaps a protractor. What is important is that for a given
source on the surface the normal incident ray that travels from the source to a reflector
and back to the source-receiver location is uniquely determined by either the dip of the
reflector or by the takeoff angle at the surface.

As we will see, this particularly simple concept is fundamental to both migration and
modeling. We can estimate what we call apparent dips from seismic sections, and then
compute the true dip of the reflector, along with a given velocity. Simultaneously, we
can compute the surface distance from the given shot point to the surface projection of
the subsurface reflector location, thereby constructing a “migrated” image.

Geologic Complexity

Perhaps the earliest and one of the most compelling reasons for modeling was presented
by Frank Rieber’s in his 1936 Geophysics paper. Quoting Rieber:

The usual form of reflection seismograph operates satisfactorily over

simple structural conditions, but frequently fails to obtain part or all of the
desired information when structures are steeply folded, faulted or otherwise
complicated. The reasons for this are plainly evident if the paths of the waves
in the earth can be visualized.

In other words, he is saying that when the geology is simple, the reflection seismogram is
easy to unravel, but when the geology is complex, it is difficult. He is also saying that if
we can model complex structures, we may be able to better understand the problem and
then develop technologies to resolve it. From my perspective, the most amazing thing is
that he proceeds to do exactly that:

This has been done by the use of a technique originally developed for
acoustical measurements.

A new type of equipment and technique are briefly described, with which
exploration may be carried into the more complex structural regions
successfully.

A miniature explosion radiates waves into various models of structure, where
reflection and diffraction take place in the same manner as in the earth. The
various moving waves are actually photographed in flight. A series of plates is
presented, showing wave patterns in various types of structures, ranging from
simple to complex.

Briefly, the technique is one of shadow photography, no lens of any sort
being employed. A bright electric spark, lasting only about one millionth of
a second, is spaced about four feet from a photographic plate. The model of
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the structure to be investigated is placed part way between the spark and the
plate, in such a position that its shadow will be photographed.

If no sound waves are present in the field between the light source and
the plate, the shadow of this model will be the only thing shown in the
photograph. The rest of the field will be uniformly exposed to the light from
the spark and will correspondingly show uniform photographic density.

If an abrupt sound wave happens to be passing through the field, however,
the light from the spark will be bent slightly at the places where it passes
through the denser air of the wave front. This bent light will be superposed
upon other illumination arriving directly on the plate from the spark, thereby
causing a dark line. The part of the plate from which the bent light was
diverged will show, correspondingly, as a lighter line.

Thus, Rieber explains why he thinks modeling is important, and then proposes a solution
to both the modeling and the visualization problem. The why in Rieber’s case was to
figure out how to interpret seismic shot records that were considered uninterpretable at
the time. In the 1930’s, tedious hand calculations were the only available methods for
placing an event on a shot record at its correct (or nearly correct) subsurface position.
These early migration methods were not well suited to positioning anything but simple
reflected events. While the response of a syncline was not difficult to unravel, what
Rieber’s paper showed was that the so-called “no record zones” were in reality areas with
even moderately complex geology. Salt structures of the size and shape we see today
were generally figments of the imagination.

Figure 2-3 demonstrates the validity of Rieber’s shadow method. Figure 2-3(a)

shows that the response of a truncation in an otherwise constant velocity medium

is a diffraction. This is a circular event that could have easily confused the typical
inexperienced interpreter of the day. Part (b) shows the downward traveling wave on
the edges along with the reflected wave in the center for a faulted structure. Note the
clear diffractions on the left-hand side of this graphic. It is one of several similar Rieber
graphics that clearly demonstrate the success of his technique. The left half of this
figure shows a snapshot of the response from a syncline at some time after the explosion
at the center of the image. The right half is a snapshot at a later time. What we see,
particularly on the top half of the figure, is the characteristic bow-tie reflection from the
syncline.
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Figure 2-3. Rieber’s shadow graphs of the response of simple geologic structures.
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At the time of Rieber’s research, the complexity of the seismic response was not well
understood, and, consequently, detecting or even recognizing dip on these records was
problematic. Figure 2-4 shows that Rieber understood this as well, and formulated a
method for more or less automatic detection of the associated dips. It represents what
is believed to be one of the first ever utilization’s of what is now called slant stacking.
Note that it is applied to a shot record and really detects the angle at which the given
reflection emerges. The dip detector first estimates the emergence angle of a reflected

sin 6

wavefield at the receiver locations, which can be computed from % = —. Given

the emergence angle and the velocity of the wavefield (which was assumed constant in
Rieber’s day), we can directly calculate the location and dip of the reflector from which
the wavefield came. As we will see in later chapters, this emergence angle data and the
directly related subsurface dip are crucial in all modern migration methodologies.
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Figure 2-4. Rieber’s approach to detecting dip.
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Hypothesis Testing

A more modern reason behind data synthesis is what can be called hypothesis testing. An
example of this is displayed in Figure 2-5. The left hand side of this figure is an arbitrary
line slice taken through a 3D prestack depth migration of a seismic data set from the Gulf
of Mexico survey. It was chosen to be as close as possible to a true dip line. The right
graphic is an image constructed from 2D isotropic elastic data synthesized over a 2D
structure constructed from the 3D migration velocity field along with top and base salt
interpretations.

Figure 2-5. Modeling multiples.

When mapped in 3D, the circled amplitude package appears to define a stacked set

of hydrocarbon bearing reservoirs with significant potential. Thus, the hypothesis in
this case is that the package is a valid prospect. To test this hypothesis, a 2D acoustic
Earth model was constructed. The model velocity was taken to be the migration velocity
with a top and base of salt used to define the salt body. Although not shown, the model
includes shear velocities below the water layer, and, consequently, some converted
waves have been imaged on the section.
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The right side of Figure 2-5 shows the result of the modeling under the assumption that
the surface of the water is not reflective. Thus, any repetitive events cannot be from
water column multiples. The clear evidence of multiple amplitudes in a setting where
such amplitudes cannot be due to the water layer, confirms the hypothesis that the
amplitudes are from peg-leg multiples or converted ray events.

There are, of course, many other ways to utilize modeling to answer various hypotheses
that are not directly related to verifying that some event or anomaly is noise. We can
also build models to compare various alternative model parameters in an attempt to
quantify observed amplitude versus offset or amplitude responses. In a subsequent
section on full waveform inversion, we will demonstrate the importance of low
frequency acquisition in the specification of the earth velocity field.

Acquisition

An important recent utilization of modeling by Carl Regone at BP dealt directly with
trying to verify that wide azimuth acquisition is superior to narrow acquisition. What
these studies showed was that, as actually assumed by the mathematics, wide azimuth
acquisition produces superior results in all settings. We will investigate this issue in the
chapter on Data Acquisition.

Woaves and Wavefields

As described in Figure 2-6, wavefields are characterized and described by several well
known terms:

e f =TFrequency = cycles/second

e @ = Angular Frequency = radians/second = 27 f

= Wavelength = meters/cycle

)

f
k

= Temporal Wave Number

%

k., = Spatial x (XLINE) Wave Number

ky = Spatial y (LINE) Wave Number

Figure 2-6. A single frequency sinusoid (wavefield) with amplitude A(x,y,z, )
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These terms completely characterize wavefields in space-time, frequency-space, and
frequency-wavenumber. We can think of wavefields as actually being the sums of
sinusoidal style waves having the general form of Equation 2-3, where A = A(x,y,z,w =
2nf) is a positive amplitude as a function of spatial position (x,y, z) and frequency, and
¢ = @(x,y,z,t) is the so-called wavelet phase.

(2-3) Ux,y,z,t) = Z A[cos(a)t + @) + 1sin(wt + (p)]

6]

The main point is that the wavefields actually exist in three-dimensional space-time

and can be characterized in many different ways. While we cannot record the full three
dimensional response of any given source, the wavefield due to such a source is in fact
four dimensional and effectively exists at each point where energy from the source exists.
In this book, we will mostly be concerned with wavefields measured on one surface,
typically where z = 0. But, as is the case for VSPs, we also record seismic wavefields at
locations with z > 0.

Figure 2-7 further clarifies what we mean by Equation 2-3. As any given sinusoid
propagates through the Earth, its wavelength and amplitude change as functions of both
reflection strength and sound speed. Although not shown in the figure, these quantities
can also change purely as a function of the material through which they are propagating.

Figure 2-7. Wavefield in space at two different velocities. Note that the
wavelength and the amplitude can change purely as a function of
velocity.
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The Scalar Wave Equations

From the author’s perspective, current state-of-the art practice in digital synthesis of
seismic wavefields is usually based on one of four wave equation styles.

e The simplest style is called the scalar wave equation governing particle motion.
Traditionally, this equation involves only compressional style waves and provides
a wavefield describing particle motion; density is assumed constant.

e The first and second order formulations of what is usually referred to as the stress-
strain equations can synthesize both compressional and shear wave data, although
at considerable expense in 3-D. Thus, in this case, the equations govern what can
be considered vector propagation. In the simplest case, there are two wavefields,
one compressional and one shear. In the more complex case, there are three
wavefields, one compressional and two shear. The stress-strain versions are clearly
the most interesting because they allow for the most complex anisotropic wavefield
propagation methods.

e The pressure formulation of the wave equation includes density in a form that can
be used directly for synthesizing marine style acquisition.

The [-D Scalar Wave Equation

In this section, we derive a simple one-dimensional version of the so-called scalar wave
equation. Wavefields satisfying the various forms of the wave equation are currently
our best guess as to how low-frequency-sound energy propagates through the Earth.

As we will see, different media require specialized equations, but the basic synthesis or
modeling principles remain remarkably similar.

We can gain insight into how particle movement (wave propagation) is governed by
considering a simple one-dimensional model. We will start by thinking of the media as a
series of discrete particles loosely connected by some form of restraint. Figure 2-8 shows
a series of masses, m, connected together through a series of springs under tension, k. A
source at one end of the chain creates a wavefield that travels up and down the chain.

Figure 2-8. A simple one-dimensional model.
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If a force is applied at one end of this one-dimensional model, the mass u(x) at x reacts
with and is acted on by masses u(x — h) and u(x + h). Each such mass accelerates and
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decelerates as the wavefield generated by the source propagates up and down the model.
Note that, although we have suppressed it in the notation, the fact is that u(x) = u(x, f).
In general, we think of each of the masses, u(x), as particles that move back and forth as
time progresses. What we see is a wave passing up and down the model.

Describing particle movement is accomplished through the use of two fundamental
laws of physics, Newton’s second law of motion, that is, force is equal to mass times
acceleration, and Hooke’s Law.

In physics, Hooke’s law of elasticity is an approximation that states that

the amount by which a material body is deformed (the strain) is linearly
related to the force causing the deformation (the stress). Materials for which
Hooke’s law is a useful approximation are known as linear-elastic or Hookean
materials.

In mathematical form, Newton’s law is given in Equation 2-4, where a is acceleration and
m is the particle mass.

(2-4) F =ma

The force caused by acceleration is what you feel when you step on an automobile’s
accelerator. In the context of Figure 2-8, acceleration is the rate of change in velocity
with respect to time. Thus, for the particle at u(x), Newton’s second law becomes
Equation 2-5, where 7(x, t) is the force per unit area, or stress, at x.

v(x, t+ At) —ov(x, t)
At

(2-5) T(x,t) = m

The fact that the velocity is the change in particle position as a function of time yields
Equation 2-6, and, thus, Newton’s law can be written as Equation 2-7.

u(x, t) —u(x, t — At)

(2-6) v(x, t) = A7

u(x, t+ At) —2u(x, t) + u(x, t — At)

2-7 b)) =
(2-7) T(x, t) =m AR

For our purposes, Hooke’s law can be rephrased as:
A change in force per unit length (area or volume in higher dimensions) is

equal to the bulk modulus times the increase in length divided by the original
length.
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Because of the way in which our small particles of mass are arranged, the force 7(x,t) =

F(z’t) per unit length is really determined by the action of the particles adjacent to

position x. Hooke’s law can be stated mathematically as Equation 2-8 or Equation 2-9.

t(x,t) = t(x+h,t)+1(x—h,t)

(2-8) _ —u(x —
_ u(x +h, t) —u(x, t)l .k [u(x, t)—u(x—h,t)
h h
ki u(x+h,t) = 2u(x,t) + u(x —h,t) u(x, t+ At) —2u(x, t) + u(x, t — At
(2-9) - 2 = 2
m h At

If we suppose that there are N masses (particles), each of density p, then the total length
is L = Nh, the total mass is M = Nm = p, and the total stiffness of the array is K = k/N, so
we get Equation 2-10.

(2-10) — ===
m

Thus, in the limit as & and At approach zero, we get Equation 2-11. The quantity KL is
actually Young’s modulus of the medium containing m.

2-11) KL &’u B 9%u
p I g
It turns out that the quantity v = K—)L is the velocity of propagation within the medium,

f
and so we have succeeded in deriving what is normally called the one-dimensional wave
equation, Equation 2-12.

(2-12) o°u 1 du
B o2 o2 B2

It is interesting to note that if we combine Equation 2-7 and Equation 2-9, and then
rearrange the result in the form shown in Equation 2-13, we obtain an equation that
allows us to propagate a wavefield in the one-dimensional medium due to the source
s(xp, t) at position x,.

(2-13) u(x, t+At) = 2u(x+h,t)—u(x,t—At)
+ P[(u(x + h, t) = 2u(x, t) + u(x — b, t)] + s(xy, t)

If we begin the discussion with both mass, m, and strain, k, as functions of position, x,
the velocity, v = v(x), of our one-dimensional wave equation will vary as a function of
position.
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It is clear from Equation 2-13 that propagation at each time step is achieved through
the application of appropriate weights to the wavefields at the two previous time steps.
In the case where velocity varies, the weights form a stencil and change for each spatial
position. The wavefield at time stamp ¢ + At is computed starting at the left most spatial
position and continuing to the right.

Figure 2-9 demonstrates the process. Beginning at the left each spatial output point
amplitude is computed as a weighted sum of spatial points from the two previous time
steps, that is, f + At. The stencil at ¢ is centered around the spatial output point at ¢ + At
so that waves can propagate in all directions.

Figure 2-9. Graphical interpretation of a one-dimensional propagator
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Scalar Wave Equation in Higher Dimensions

Figure 2-10 shows a simple model in two dimensions. In this case, masses, m, are
connected by the equivalent of springs with tension k. A source placed as a point on the
grid creates a wavefield that travels up throughout the grid in all directions.

Figure 2-10. A simple two-dimensional model.
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Extending the one dimensional nature of Equation 2-12 into higher dimensions is not
difficult. We need only consider a two-dimensional grid of masses similar to the one-
dimensional grid in Figure 2-8. Our model now has an area A = L, = L,, instead of length

. k . . .
L, a total stiffness of K = —, and total mass M = mL,L,. Our discrete equation governing

Xy
wave propagation must accommodate particle motion in both the x and y directions, but,
in actuality, this really only involves Equation 2-9. Thus, if we follow our approach for
the one-dimensional discrete equation, Equation 2-13, we arrive at Equation 2-14.

(2-14) (u(x, z,t + At) — Zu(x,zz, t) +u(x,z,t - At) _
At
ki’ u(x+h,z,t)-2u(x,z,t)+ulx-nh,zt) u(x,z+h,t)-2u(x,z,t)+ulx,z—-h,t)
7 hz + h2

In more compact mathematical notation, the two-dimensional Equation 2-14 becomes
Equation 2-15.

(2-15) —s =0 W-'-ﬁ

u ) Fu  du
oF*

After following the same procedure for a three-dimensional grid, the three-dimensional
wave equation becomes Equation 2-16.

2 2 2 2
2-16) ) 124 _ 02[8 u Jdu d u]

ot o > T oz

Here, we have derived the mathematical wavefield equations for what is normally called
acoustic or pure isotropic modeling. In this case, the velocity was assumed constant, but
the difference between a constant velocity and variable velocity derivation is minor.
Equation 2-15 and Equation 2-16 are referred to as scalar wave equations because

there is only one wavefield, not a vector of two or more. Generally, the geophysical
convention is to assume that z is the vertical or depth direction, but that is really just a
matter of convenience. We could just as easily have used x; for x, x, for y, and x; for z.
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Pressure Formulation of Acoustic Wave Equation

Without going into great detail, we can also derive a pressure formulation of the acoustic
wave equation (see Keiiti Aki and Paul G. Richards). This equation takes the form shown
in Equation 2-17.

p o9 1 dp 9 1 dp I 1 op

- = 2 _ LT L _
(17 ot Py, 2) (XY, 2) dx p(x,y,z) dx " dy p(x,y,z) dy "oz p(x,y,2) dz

In contrast to the particle motion described by Equation 2-16, Equation 2-17 measures
pressure changes at any given position. I like to call this the reflection formulation
because of the presence of the acoustic impedance term, pv. This equation can be put
in the very compact form of Equation 2-18, where V (the vector differential operator,
pronounced del) is given by Equation 2-19.

&zp 1
2-18 —= = pv?V .-V
( ) 97 pv 5 p
Jd d d
(2-19) V= (a_ 7 z)

Ultimately, we are interested in deriving equations for more complex fully elastic
wavefields, including anisotropic wavefields. These wavefields require more parameters
to describe the multiplicity of wavefields that exist in such media. Before increasing the
complexity of the discussion, we will focus on a graphical description of how discrete
modeling works, and then turn our attention to algorithms for implementing the actual
modeling exercise.

Stress-Strain Equations

As we know, isotropic elastic models are described by three familiar parameters: density,
compression velocity, and shear velocity. To model elastic wavefields in such three-
parameter media, we need to derive a suitable equation or set of equations that describe
the wavefield propagation at any given instant. Unfortunately, these three parameters
are not the most useful for this purpose. On the other hand, the required parameters are
much more directly related to actual rock properties. Moreover, relating the required
parameters to more useful quantities is fairly straightforward.

We begin (Equation 2-8 and Equation 2-7) by observing that Equation 2-20 is true, so
that Equation 2-21 is also true.
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F(x,t)  F(x+ht)+F(x-h,t)

(2-20) p = p
' (u(x + h,zZ —u(x, t)) ok (u(x, t) - Z(x -h, t))
B (u(x,t + Af) = 2u(x, t) + u(x, t — At))
=P AR
(2-21) T(x + h,t}z —1(x, 1) ) (u(x,t + At) — 2uA(J;é t) + u(x,t - At))

In continuous terms, Equation 2-21 can be restated as Equation 2-22.

gt Ju

(2-22) el

Equation 2-22 is a first order partial-differential equation relating a second order change
in time to a first order change in force per unit area. Force per unit area is generally
referred to as stress, so our equation relates particle acceleration to stress. In this setting,
the stress is one-dimensional and acts along or parallel to the layout of the string. There
is also only one compressional wavefield described by this equation.

Stepping up to the simple isotropic elastic models described by the three familiar
parameters above, means that it is necessary to include one additional wavefield in the
mix, namely shear. While including just two wavefields is certainly an option, there
isn’t any reason not to move up to full anisotropic elasticity by incorporating two shear
waves for a total of three wavefields. In three dimensions, Equation 2-22 takes the form
of Equation 2-23, where i = 1,2,3 and we have arbitrarily chosen to set x = x;, y = x,
and z = x;.

2 3
) 1 0 i
(2-23) 7 _ 1N
A p Jx;

=1

Clearly, this is a three-dimensional equation with nine stress factors, 7;, one for each of
the three dimensions and wavefields. To make this into a system of equations governing
the three wavefields, we must find a way to relate the stresses, 7; to the u;. As before,
Hooke’s law comes to the rescue. What it says in this anisotropic case is:

Each component of stress is linearly proportional to every component of
strain.
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Strain, which measures the deformation (compression, extension, ...) of a solid, is
defined in the notation of the previous equation as Equation 2-24.

B 1(8um &un)

2-24 Epp == =2+
( ) me2\ox,  dx,

The mathematical expression of Hooke’s law then takes the form of Equation 2-25.

(2-25) Tij = z CijmnEmn

mmn

Inserting Equation 2-25 into Equation 2-23, we finally get the complex system (i = 1,2, 3)
of fully anisotropic equations of motion, Equation 2-26.

(2-26) A Z Cinn 011y,
B p 0x,0x;

mmn,j

Symmetry

Because Equation 2-26 is three-dimensional, each of the c;;,, coefficients is actually a
three-dimensional volume. Even today’s massive supercomputers may not have sufficient
memory to handle a problem of this size.

We could easily throw up our hands at this point and give up, but, before we panic too
much, we might want to analyze the situation a bit. As it turns out there are at least

two things we can do to simplify the situation considerably. First, we can simplify the
mathematical notation to put us into a setting where we can make some sense of the
parameters, and second, we can reformulate the c;;,,, coefficients in a way that will make
a great deal more physical sense.

We are not really interested as much in the math as we are in understanding the kinds

of Earth models these c;;,, coefficients define for us. We need to know how the various
velocities of the wavefields that propagate in the medium are defined. We also want to
see if we can understand how direction changes the speed of propagation, and then see if
we can find ways to estimate parameters that can be converted into c;;,,, volumes so we
can both synthesize data and image data we have recorded over fully elastic models.

The first simplification to the complexity of Equation 2-26 is based on the symmetry

of stress and strain. Here, the 7j indices representing stress can be switched so that

Cijmn = Cjimn- Similarly, the strain based indices can also be switched so that ¢, = Cjjm-
Finally, it is also true that c;;,,, = c,,;;- This triple symmetry means that the total number
of ¢jj,,, volumes has been reduced to only 21! Thus, defining the most general model
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we can imagine requires only 21 independent parameters (volumes), instead of the 81
parameters we would need without symmetry.

By applying the indexing scheme (known as the Voigt scheme) in Equation 2-27, we
arrive at the 6x6 matrix shown in Equation 2-28.

index i = 11 22 33 23 13 12
(2-27) map | N AN
index k,1 = 1 2 3 4 5 6

€11 Ci2 €13 Cig C15 Ci6

Cip Cxpp (a3 Cpg (o5 (g

(2-28) C=[cy] = E13 Ez3 E33 E34 E35 E36
14 Coa C3g Cqq Cy45 Cyge
C15 C5 C35 C45 C55 Csg

| €16 C26 C36 Cae Cse Cos |

This matrix completely describes the unique set of 21 coefficients fully defining
anisotropic elasticity. In this case, the C matrix is the most complicated form of
anisotropy we can encounter. For the interested reader, this case is called “triclinic”
symmetry and is probably something we will not be able to investigate computationally
until computers have advance significantly beyond where they are today. Moreover,
we may never be able to measure sufficient data to be able to estimate all of these
parameters. Consequently, we will focus on what we consider reasonable today.

Acoustic Symmetry

In what perhaps is overkill, the C matrix takes the form shown in Equation 2-29 for a
purely acoustic medium.

(2-29) C= [Ckl] =

o N N VI
o e e I R
ccococoo

OO O > > >

OO OO OO
OO OO oo

Here, A is the first of the two so-called “Lamé” parameters. Named after Gabriel Lame,
they are material properties (proportionality constants) that relate stress to strain. In this
case, A is directly related to the bulk modulus, K, so that the compressional velocity is

v _\/?_\F
P p p’
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If we define the actual c;;,,, from the elements of C, plug them back into the fully
anisotropic Equation 2-26, we see that u; = u, = u; = u, and consequently
that Equation 2-26 reduces to Equation 2-30, which is, of course, the normal three-
dimensional scalar wave equation.

(2-30) & 3 & ’u N o°u N o’u
i p Xt  dxs  Ix]

Equation 2-23 shows that 7;; = 0,i # j, 717 = T, = T33 = T, and u; = u, = Uz = u, so that
Equation 2-30 becomes Equation 2-31.

Pu Ao o o
ot plox;  dx,  Ix
(2-31) Aldu  Ju  du

T = E[o-)_xl-i_a_xz-i-a_x?)

These two equations can also be written in first order form as Equation 2-32.

F R ol e
ks Aldu  Jdu Ju ]

v Aldrt  odtr It ]

(2-32)

TR el e

Isotropic Elastic Symmetry

For isotropic elastic models, the C matrix takes the form in Equation 2-33, where  is the
second of the two Lameé parameters, and represents the shear modulus.

-/\+2y

A A
A+2u A
A A+2
(2-33) C=lcul = 5 .
0 0
0 0

SO &®m OO O

A
A
0
0
0

oOTW OO OO
T OO OO

. A+2 K+au/3 S
In this case, v, = er” = \/ +p” / , and the shear velocity is then v, = \/g .

It is clear from these relationships, that given density, p, compressional velocity, v,, and
shear velocity, v,, it is quite easy to solve for the coefficients in the C matrix, and then
produce the propagation equation for synthesizing isotropic elastic seismic data. It is also
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clear that modeling with this level of complexity is considerably more computationally
intensive than is the case for acoustic models.

Given the matrix in Equation 2-33 and then using Equation 2-23 and Equation 2-25, we
can write Equation 2-34.

82141 1({dty; Jdt1, JTq5
2- = (=2 : :
(2-34) o p\ dx " x, " x5
82u2 _ 1 8”[2,1 + 0—)"[2’2 4 8T2,3
ot p\dx;,  Ix,  dxg
821/[3 _ l &T?),l + 8T3’2 4 0—)"[3,3
o p\ dx dx,  Oxs
o, = /\+2y8u1+&8u2+&8u3
' p dx pdx, pox
_ H(om, 9
2 = p(&xz i 8x1)
_ B[ 1
s = p(8x3 i c?xl)
Ty = A du, N A+ 2u du, N A dus

p 9x, p dx, podx;
I
23 = p(&x2+8x3)

Aduy  Adu, A +2udus
——+——+
pox;  padx, P dxs

Note that each 7;; is expressed in terms of various partial derivatives of the ;. Back
substitution of these expressions into the formulas in Equation 2-34 for the second order
time derivatives allows us to write the elastic particle displacement equation in the form
of Equation 2-35.

o*u 3

ot

2
(2-35) (A;‘jVme—%VXVXu

From a practical point of view, Equation 2-35 says that, even in the elastic case, we can
solve for the vector components of particle displacement u in much the same way that
we solve for the non-vector wavefield, u, in a scalar wave equation.

We can also write Equation 2-34 as a first order vector system. If we take the partial
. . . . Iy .
derivatives of the stress-strain terms, 7, in Equation 2-34 and let v; = %, we obtain the
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first order equation for particle velocity, Equation 2-36.

(2-36)

%
ot
9%
ot
905
ot

QTM

ot

0"’[1,2
ot
JTy;5

ot

dTy,

ot

J7y5

ot

dT33

ot

1(dty, d1yp  d193

p\ Ix ox, dx;

1 872/1 0-)’-[2,2 0-)T2,3

p\ dx dx,  dxs

1(d

2 %% dT3, 4 dT33

p\ dx dx, 0x;

A +2u dvy N A dv, N A dus
p dx; pdx, pdx;

(oo, 90

p\dx, dx;

(oo, 9%

p\dx;  Jdx;

Advy, A+2udv, Adus

p Ix; p dx, podx;

p\ox;

%%*%)

ax,

Ad Ad A+2ud
Adoy  Adoy  A+2p 00,

p Ix;

p 9x,

p 0x;

Equation 2-36 provides a first order system of equations (in time) as opposed a second
order system like that in Equation 2-26. Note that, because of symmetry, we need not

. P
write down the terms

JT12  JT31

ot

(9’1’1/3

ot

8’[3/2

_ 8’[2/3
o

ot

We can write Equation 2-36 in the form of Equation 2-37, where S(f) is a suitable vector

T
source term, v = [vl,vz, U3, T11, T12, T13 T22, T2 3, 13,3] , and Equation 2-38 defines H.
The A, B, and C matrices in Equation 2-38 are themselves defined in Equation 2-39,
Equation 2-40 and Equation 2-41, respectively.

(2-37)

(2-38)

30

H=A—

&V—H +S
o Y
ov +B&v
9x; ax,

ov

+C——

dx;5
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0 00 p! 0 0 00 0]
0 00 0 p* 0 000
0 00 0 0 pl 000
A+2u
200 0 0 0000
“

(2.39) A_| 0 200 0 0000
00%000000
ﬁoooooooo
0 00 0 0 0 000
ﬁoooooooo
0 0 00 pl0 0 0 0]
00 00 0 0p! 0 O
00 00 0 0 0 pto
ogooooo 0 0

(2-40) B_%000000 0 0
0 0 00 0 0 0O 0 0
o“pz“ooooo 0 0
00%0000 0 0
0§00000 0 0
00 0 00 pt0 0 O
00 0 00 0 0 p' 0
00 0 00 0 0 0 pt
ooﬁoooooo

oo 0 00 00 0 o0

(2-41) C—goooooooo
00§000000
0%0000000
00“;“000000

Equation 2-38 is appealing because it is a one-dimensional, time-domain differential
system whose solution is easily expressed as Equation 2-42, where v(0) represents the
initial conditions. When we discuss numerical approximations to this equation, we will
find this fact quite useful. It allows us to propagate wavefields one time stamp at a time
without having to solve a second order system. It is also easily manipulated to produce a
very efficient and accurate forward marching algorithm, the evolution equation.

t
(2-42) v(t) = efy(0) + f MG (1 £)de
0
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Before developing the forward marching algorithm, we continue our discussion of the
various types of data we might wish to synthesize.

Vertical Transverse Isotropy (VTI) Symmetry

The C matrix in Equation 2-43 defines what has become known as vertical transverse
isotropy (VTI).

11 C11—2c4 c13 0 0 O ]
C11 — 2Cq4 1 cs 0 0 O
c c c 0O 0 O
2-43 C=1lc] = 13 13 33
( ) [ kl] 0 0 0 Cus 0 0
0 0 0 0 cyu O
0 0 0 0 0 cg

Waves propagating in media of this type exhibit a symmetry around the vertical or depth
axis, z. Note that the pattern of this matrix is identical to that of the isotropic elastic C
matrix. In fact, by setting ¢;; = ¢33, ¢4 = ¢55 = Y, and ¢35 = A, the VTI C matrix
becomes the isotropic elastic matrix. As we will see, the square roots of the ratios % and

C, . . . o, . . . .
f specify the vertical compressional and shear velocities in the anisotropic medium.

It should not be a surprise that the c; values in the matrix can be related to intuitive
parameters more representative of how we think of the Earth.

We could again follow the development of Equation 2-36 to produce an equivalent
for VTI media, but that is left to the reader. The important thing to notice is that
implementation of a discrete version of the resulting first order system will almost
certainly follow along the same lines as that for the isotropic elastic case above.

Rock types exhibiting VTI behavior include shales and thin-bed sequences.
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Polar Isotropy Symmetry

The difference between VTI and polar isotropy is that the symmetry axis is tilted
relative to the vertical axis. Early on, this type of anisotropic symmetry was called tilted
transversely isotropic (TTI) anisotropy, but in this book I prefer to use Leon Thomsen’s
more general term, polar symmetry. Symmetry of this type is easily obtained by simply
rotating the tensor ¢;;,,, of a VIT medium through a fixed angle. The new resulting C
matrix produces wavefields that are symmetric around the new symmetry axis. In this
case the axis can be relative to any plane through the medium and the propagation is
symmetric relative to that plane. Unfortunately, when the symmetry axis is not aligned
along the primary axis, neither the C matrix nor the tensor, c;;,,, is particularly simple
and generally does not have an easily recognized pattern. This may not be much of an
issue since, when the rotation angle is known, it is possible to rotate back forth between
VTI and TTI at any time.

Rock types with polar isotropy are identical to those exhibiting VTI, but in this case the
symmetry is orthogonal to the dip of the rock.

Orthorhombic Isotropy Symmetry

Polar anisotropy, including VTI, is always defined by five parametric volumes and the
two angles defining the symmetry axis. The C matrix with nine elements in Equation 2-
44 defines orthorhombic anisotropy.

i1 62 ¢z 0 0

Cip € €3 0 0

i3 €3 C3 0 0
0 0 0 ¢y O
0 0 0 0 cx
0 0 0 0 0 -cg

(2-44) C =[cy] =

OO DO OO

Orthorhombic anisotropy is probably the most realistic anisotropy that we will be able to
handle or even use in the forceable future. Again, derivation of a first order system like
that in Equation 2-26 is left to your discretion.

Examples of rock types that exhibit orthorhombic symmetry include
¢ thin-bed sequences or shale with a single set of vertical fractures
e isotropic formation with a single set of vertical, noncircular fractures

¢ thin-bed sequence, or shale, or a massive isotropic sandstone with orthogonal sets
of vertical fractures
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Thomsen Parameters

In the mid 1980’s, Leon Thomsen’s research into anisotropy at AMOCO’s Tulsa,
Oklahoma research lab lead him to define a collection of parameters that provided a
much more intuitive picture of the entries in the C matrix. Thomsen began by defining
Equation 2-45.

Upgp = o

_ Caq

Uso = o

c11—¢

(2-45) e = 1T
2C33

5 = (c13+caa)’ ~(C33—Cas)

2c33(c33—C44)

_ Co6—Ca4

')/ — 0

2C44

He then showed that the exact plane wave velocities could be expressed as a function of
the propagation angle, 0, using Equation 2-46, where D’ is defined by Equation 2-47.

vy(0) = 012)0[1 +esin® O + D’]
V2 V2 ’

(2-46) 2 (0) = v§0[1 teg sin” 0 + 2D

v (0) = vgo[l + 2y sin’® 6]

1/2
-] ses-g 4012 v
(2-47) D=—>2R1+—-—"sin*0cos’0+ ————sin" 0} -1
2 1 - 20 1 - 20

2
Y50

%
While these formulas have found considerable use for describing anisotropic models
and for providing propagating equations for synthesis of anisotropic seismic data, the
parameters of most importance for this book are the vertical and horizontal velocities.
Typically, these velocities are defined from the weak polar anisotropy expressions in
Equation 2-48 with values defined by Equation 2-49.

v3(0) = 01230[1 +6sin’ 6 cos? 6 + ¢sin” 6]

Q

(2-48) 2 (0) vgo[l + Z(e ~9)sin’ 0 cos? 9]

Q

v3,(0) vgo[l + 2y sin’ 6]
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Up(oo) = Upo

0,(90) = vp(1+¢)

Us, 0) = Uso
(2'49) Usi (90°) ~ Vso

Us, © ) ~ Uso

Clearly, ¢ controls the percentage of anisotropy. It determines the speed of the horizontal
velocity relative to the vertical velocity vg,. What will become apparent as we progress
through this book is that 6 controls what I will refer to as conversion to depth.

Expressing anisotropic parameters in this manner provides a more natural idea of the
parameters defining a polar anisotropic model. While there are many possible variations,
such models are defined by four volumes, the vertical velocities vp, and vg, €, and 6.
Equation 2-26 is then discretized to provide the necessary propagating equation.

Algorithms

Algorithms for synthesizing seismic data abound. Here we will focus on four such
methods: Ray-based, finite-difference, finite-element, and Fourier-domain-based
methods. Of course, you can construct algorithms in various combinations of these
domains, so it is technically possible to develop approaches that work with finite-
differences in frequency-space or even perhaps time and spatial frequency. Once
the basic concepts for the four are fully developed, pursuing alternative domain
combinations is relative straightforward.

To keep the discussion as simple as possible we will focus all of our attention on the two-
dimensional versions of Equation 2-17, and the coupled system Equation 2-36.

Variational Formulation and Finite Elements

We begin with Equation 2-18 in the frequency domain, where g(x,) is a pressure source
located at ¥, = (x,,y,, ), and with ¥ = (x, y,2), k(X) = %

Equation 2-50 has the variational form in Equation 2-51, where V is an element of a
suitable space, 7, of functions that can be used to approximate U(X).

K 1
(2-50) FU(X, Y,z,@)+ V- EVU = —g(xs,ys, Zs, @)
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K 1
(2-51) o(U, V) = f L uvaa + f VU -VVAQ = — f 2@, HAQ
Qp Qp Q

Given a family, V, of basis functions spanning 7, we can approximate U and g by
Equation 2-52 and Equation 2-53, respectively.

(2-52) UX) = Z A V(@)
k=1
(2-53) 8 w) = Y V@)
k=1

Thus, the variational form in Equation 2-51 can be expressed in matrix form as
Equation 2-54 or Equation 2-55, where A" = [A, Ay, ..., A, and b = [b1,by,...,0,].

(2-54) Z AkQD(Vk, V]) = Z bkf VkV]dQ
k=1 k=1 Q
(2-55) SA = Mb

In this setting, S is called the complex impedance matrix and M is called the stiffness

matrix. Note that we have dropped reference to frequency, w, so that SA = M is a single
frequency equation.

If we choose our discretization scheme properly, we may assume that S is square,
symmetric, and invertible, so that the modeling operator s generates data according
to the formula in Equation 2-56.

1—)

(2-56) U=s'f

The key point to this discussion is that we have wide latitude in the choice of V,. We
can divide the model into a collection of local regions and then define V, through
polynomials, pyramids, or perhaps even boxes over each of the sub domains. This
approach works well when the problem is defined by things like bridges, aeronautical
structures, and other rigid bodies, but has never gained ground in seismic settings.

Dividing the medium up in this way is quite difficult mathematically, so modern
methods tend to choose uniformly square or rectangular domains. It is also convenient
to have basis functions that are easily differentiable and orthogonal. Thus, in some sense,
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the modern version of finite element methods (FEM) tends to look more and more like
a very sophisticated finite difference approach. However you accomplish the model
division, the need to invert a matrix of significant size remains a serious issue.

For example, consider the one dimensional case and define V,(x) using Equation 2-57.

X—X-1
— x € [x_1, X¢]

vV

(2‘57) Vk(X) =9 Ten Tk X € [xk, xk+1]

Xk+1~Xk

0 elsewhere

As illustrated in Figure 2-11, the V, = 1,...,n basis is composed of shifted and scaled
tent functions. For the two-dimensional case, we again choose one basis function, V,,
per vertex, x;, of the triangulation of the planar region (). The function V, is the unique
function of x whose value is 1 at x; and zero at every x;,, j # k. This process extends
easily to three dimensions.

Figure 2-11. Basis functions V; (blue) and a linear combination of them, which is
piecewise linear (red)

A

xﬂ=0 >~<1 xg xg x4 ><5=

The primary advantage of this choice of basis is that the inner product in Equation 2-58
will be zero for almost all j, k.

1
(2-58) W, Vi) = [ VVedx
0

In the one dimensional case, the support of V, is the interval [x;_;, x;,;]. Hence, the
integrands of (V;, V) and ®(V;, V) are identically zero whenever |j — k| > 1.

Similarly, in the planar case, if x; and x; do not share an edge of the triangulation, then
the integrals 2-59 and 2-60 are both zero.

(2-59) IRAZE
Q
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(2-60) [ v vvias
Q

In two-dimensions, triangular elements can be used to approximate the
domain of approximation in both regular and irregular ways. In Figure 2-

12, a regular mesh is used to approximate the domain, and then through
pyramids approximate the dome-like structure in the figure. Figure 2-12
illustrates a reasonably regular triangular decomposition of a domain at the
bottom and the approximation to a dome accomplished through the use of
the pyramidal versions of the basis functions in Figure 2-11. (From Wikipedia
contributors,“Finite element method,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php!title=Finite_element_method&oldid=298136444).

Figure 2-12. Domain triangles with pyramids as elements approximate a dome like
surface. In this case the triangular basis mesh is regular. ( From
Wi ikipedia)

In contrast, Figure 2-13 shows an much more irregular approximation of the domain
of approximation. It is an example of the utilization of irregularly sized triangles to
decompose the domain of approximation. The mesh is denser in areas of interest.
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Figure 2-13. Domain triangles with pyramids as elements approximate a dome like
surface. Here the triangular basis mesh is irregular. ( From
Wikipedia)

Figure 2-14 shows the general form of a 2D S matrix. Generally, this matrix has
dimensions equal to the number of nodes or finite elements. An intriguing feature of the
finite element method is that once the S-matrix is inverted, any and all shot responses
can be synthesized from this single inverse.

Figure 2-14. The general form of the S-matrix in two-dimensions. (From
Wi ikipedia)
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Depending on the author, the word “element” in “finite element method” refers either
to the triangles in the domain, the piecewise linear basis function, or both. For our
purposes, it is the latter. So, for instance, an author interested in curved domains
might replace the triangles with curved primitives, in which case he might describe
his elements as being curvilinear. On the other hand, some authors replace “piecewise
linear” by “piecewise quadratic” or even “piecewise polynomial”. The author might then
say “higher order element” instead of “higher degree polynomial”. The finite element
method is not restricted to triangles (or tetrahedra in 3D, or higher order simplexes in
multidimensional spaces), but can be defined on quadrilateral subdomains (hexahedra,
prisms, or pyramids in 3D, and so on). Higher order shapes (curvilinear elements) can
be defined with polynomial and even non-polynomial shapes (for example, ellipses or
circles).

More advanced implementations (adaptive finite element methods) utilize a method to
assess the quality of the results (based on error estimation theory) and modify the mesh
during the solution, aiming to achieve an approximate solution within some bounds
from the “exact” solution of the continuum problem. Mesh adaptivity may utilize various
techniques, the most popular are:

Moving nodes (r-adaptivity)

Refining (and unrefining) elements (h-adaptivity)
Changing order of base functions (p-adaptivity)
Combinations of the above (hp-adaptivity)

In general, the finite element method is characterized by the following process.

e Choose a grid for Q. In the preceding example the grid consisted of grid points or
nodes, but one can also use triangles or curvilinear polygons.

e Choose basis functions. In our discussion, we used piecewise linear basis functions,
but it is also common to use piecewise polynomial basis functions

A separate consideration is the smoothness of the basis functions. For second order
elliptic boundary value problems, piecewise polynomial basis functions that are merely
continuous will suffice (that is, the derivatives are discontinuous.) For higher order
partial differential equations, you must use smoother basis functions. For instance, for
a fourth order problem such as u,,,, + u,,, = f, you can use piecewise quadratic basis
functions that are both continuous and have first order derivatives.

40 Modeling, Migration and Velocity Analysis



Panorama Technologies An Old Movie

An Old Movie

We can now use our modeling schema to generate synthetic shot data. Because we

have a complete wavefield at each time step, we present the synthetic data in movie
form. Our first movie (snapshots in Figure 2-15) was generated by R. G. Keys (now at
ConocoPhillips in Houston, Texas) in February of 1982. At that time, the multiplicity

of snapshots comprising these data required about 30 minutes to generate on a Cray 1S
supercomputer. Today, almost any modern desktop, and even some laptops, can produce
the same movie virtually in real time. As the movie progresses, please note that waves
travel in all directions and the wavefield recorded at the top surface of this model would
include refractions, reflections, and all forms of multiples.

Figure 2-15. Snapshot from 1982 Finite Element Pinchout Model synthesis.
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Finite Differences

At first glance, finite difference modeling is by far the simplest method to grasp,

since all that is necessary is to replace the continuous partial derivatives by discrete
approximations. However, difficulty arises in producing an accurate approximation to
the various derivatives. There are two generally accepted approaches to finding these
approximations. The first is based purely on some form of fitting algorithm, frequently
using polynomials, wherein a set of basis functions with known derivatives approximate
the function whose derivative is required. Once the fit is obtained the derivative is
defined in terms of the approximating functions.

The second way to approximate the derivatives is the finite element method (FEM). In
FEM, the region of interest is divided into numerous connected subregions or elements
within which approximate functions (usually polynomials) are used to represent the
unknown quantity.

Polynomial Differences

The easiest approach to finite difference approximation is to simply use a difference
quotient in Equation 2-61, like we did when we derived the full two-way equation. This
is called a first order forward difference approximation.

du  u(x + Ax) — u(x)

dx Ax

(2-61)

Similarly, we have the backward difference approximation in the form of Equation 2-62.
du  u(x) —u(x — Ax)
dx Ax

(2-62)

What may not be clear is that these formulas are the result of approximating u by a
straight line between x + Ax and x and between x — Ax and x.

One of the more popular methods for polynomial approximation is based on the
Lagrange polynomial in Equation 2-63 defined for a sequence of points [xg, X1, X5, ... X,,].

i=n

T (x-x)

- (e — x;)
i=0
ik

(2-63) Ly(x) =

Any function f(x) can be defined such that the point sequence can then be approximated
by the formula of Equation 2-64.

k=n
(2-64) P(x) = ) L)
k=0
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Approximations to the derivatives of f(x) can then be approximated through derivatives
of the polynomial P. Since P will always be of the form in Equation 2-65, the
approximate derivative will always be a weighted sum of the values of f(x) at the
sequence [x,, X;, X, ... X, ]

(2-65) P(x) = ag + ayx + ax® + ... a,x"

More accurate approximations can be obtained through the use of other polynomial
bases, including the Hermite and Chebychev polynomials.

Taylor Series Differences

The Taylor series for u(x + Ax) in terms of u(x) is given in Equation 2-66.

(2-66) (x + Ax) = ()+8uA +0’)2qu2+83qu3+
- Bl TR ST

If we rearrange this series in the form Equation 2-67, we immediately recognize that the
forward and backward differences are accurate to Ax. Mathematically, we say that the
forward and backward differences are O(Ax).

u(x = Ax) — u(x) du  Fulx uld
—t—t——t ———— +
Ax dx  ox* 2! T Ix® 3!

(2-67)

The Taylor series in Equation 2-66 can easily form the basis for other more accurate
formulas. The most obvious formula arises from the sum of the Taylor series expansions
for u(x + Ax) — u(x) and u(x) — u(x — Ax). This immediately yields the central difference
formula in Equation 2-68 which is O(Ax?).

u(x + Ax) —u(x - Ax) _ du Pure I u At

2-68 =—+ + +
( ) 2Ax dx  dx3 3! dx® 5!

Since we generally think of Ax as being much less than 1 in magnitude, this central
difference formula is clearly an improvement over a first-order forward or backward
difference.

Second Order Differences

When we summed the formulas for u(x + Ax) — u(x) and u(x) — u(x — Ax), we obtained a
series that contained odd order derivatives. Accordingly, if we subtract the two formulas,
we obtain a series that contains only even order derivatives. This immediately produces
the O(Ax?) formula for the second derivative with respect to x.

u(x + Ax) = 2u(x) + u(x — Ax) _ Ju? . 9*u A . 9%u Axt .
Ax? S ox? oxt 4l oxb 6!

(2-69)
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High Order Differences

Extension of the second order central difference formula to higher orders is tedious but
straight forward. For any given k (real or integer), there is Equation 2-70.

u(x + kAx) + u(x —kAx) 22 AR 40 u A
(270 B T TR P

2
69°1 Ax® . 001 Ax®
dx® 6! ox8 8!

+ k

Thus, if we want a fourth order scheme, we take the two terms in Equation 2-71
and Equation 2-72, solve the second term for the fourth order partial derivative and
substitute the result into the first term to obtain Equation 2-73.

u(x + Ax) + u(x — Ax) 2 A 9t Axt
(2-71) 2 R R TR P
(272) u(x + 2Ax) + u(x — 2Ax) () + 4 du? Ax? 16 d*u Axt
_ = u(x
2 ax? 2! axt 4!

u(x + 2Ax + 16u(x + Ax) — 34u(x) + 16u(x — Ax) + u(x - 2Ax) Ju?

2-73 ~
( ) 12Ax? ox?

Higher order central difference approximations are obtained by simply adding additional
terms to the mix. For example, a 10th order accurate term is obtained by back-
substitution in the five equations when k = 1,2, 3,4,5. The result is a scheme of the form
in Equation 2-74, where the terms are given in Table 2.1.

Ju? -
(2-74) — = wiu(x — kAx)
2

Table 2.1. Spatial Difference Terms
|| w
-5.8544444444
3.3333333333
-0.4761904762
0.0793650794
-0.0099206349
0.0006349206

Bl W N O
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Finite Differences for the Pressure Formulation

We can now formulate a finite difference propagation equation of just about any order
we would like. However, it is of interest to reconsider the graphic in Figure 2-16(b).
This figure, based on a simple second-order space-time difference equation shows that
to compute any given fixed time stamp, the maximum extent of the stencil is exactly
equal to three in each spatial direction and two in time. Thus, to make this process
computationally efficient, it is prudent to keep the three t — At, t and t + At volumes in
memory at all times.

It is clear from Equation 2-74 that higher order differences will produce stencils with
maximum extent determined by the maximum value of k. Thus, if we chose to use a 10th
order scheme for each both space and time, our propagator will be 11 grid nodes wide

in each spatial direction and 10 volumes in memory for each of the time stamps ¢ — kAt
for k = -5,5. Even with current computational capabilities, holding this many volumes
in memory is somewhat impractical. It is natural to try and find a procedure that avoids
this memory explosion problem.

Graphical Descriptions

Figure 2-16(a) demonstrates two-dimensional propagation and Figure 2-16(b)
demonstrates three-dimensional propagation in what is generally called acoustic

Earth models. Note that the central difference stencil extends from time ¢ — At to time ¢ to
compute an output point at t + Af.

Figure 2-16. Graphical interpretation of (a) 2-D and (b) 3-D propagators.

Note that in both cases, the stencil surrounds the ultimate output point to compute
the new value. In the 2-D case, the stencil nodes are planar, while the 3-D nodes are
volumetric. Thus, the wavefields are allowed to propagate upward, downward, and
laterally in all directions as the propagation continues. It also means that we must
compute all nodes at step t before we can compute any of the nodes at t + At. The
examples in the last three figures produce what is called two-way propagation. All
waveform styles (for example, refractions, free-surface, and peg-leg multiples) are
possible in this setting since these propagators synthesize full waveform data.
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Lax-Wendroff Method

Probably the best known “trick”, initially published by Peter Lax and Burton Wendroff

(see also M.A. Dablain), used the wave equation to find an accurate fourth order
2

. 9 . .
difference for g that does not increase the overall memory requirement. To understand

this trick, consider the case in two dimensions when the velocity is constant and p = 1.
From earlier efforts, we have Equation 2-75.

82;9 1 e &Zip A
2-75
o e oy o ey 2P

. . dp . .
We also know the second order derivative, &_iff’ in Equation 2-76.

82;9_ 2[9217 82;9]

(2'76) &tZ =U 8x2 + 822

Thus, the fourth order derivative in time is given by Equation 2-77.
Ip _ L|Te(Tr), Lo(Ip
ot | ox®\ o) 92| P
r 2 2 2 2 2 2
d
plor dp|, dp[dp dp
| Ix?\dx* 92 ) I\ Jx* 2

o ot ot
(2P, , v, P]

(2-77) = v?

ox* ox29z2  ox*

It should be noted that the assumptions of constant density and velocity are not
necessary because the Lax-Wendroff scheme generalizes our scheme for finding higher
order central difference terms through the recursive formula in Equation 2-78.

&Zip 1 82i_2p
2-78 2= |V —vp| S
( ) 8t21 (PU p p) 8t21_2

In this case, the higher order time derivatives can be computed from higher order spatial
derivatives by applying the spatial side of the original wave equation.

If we now replace the spatial derivatives using formulas like that in Equation 2-74,
we arrive at a fourth order formula for the second partial derivative in time. After
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calculating all the various weights, replacing partial derivatives with central differences,
and solving for Piin1 = p(iAx,jAz, nAt + At), we arrive at a discrete central difference

formula of general form shown in Equation 2-79.

79,00 = 2P, TP

21 4 2 ..
+ At |v E E Uit jon + v E bkpi_k,j,n + E P + Sip i
ko om k

m

For clarity, Ax* and Ay? have been suppressed, and s; ; , represents a source at the

location specified by i, and .

0.1

Formulas of this kind are generally called difference equations and provide what is usually
called an explicit forward marching algorithm for data synthesis. Schemes of this kind
are also called quadrature methods because they are integrating the wave equation to
synthesize a response to a given stimulus.

Figure 2-17 shows a simple pyramid model and data. The finite difference data over this
model was synthesized on VAX 11-780 computers in late 1981 and early 1982. At that
time, the calculations necessary to compute each shot required on the order of 48 hours.
Today, most laptops can compute the entire set of 24 shots in minutes.

Figure 2-17. A simple pyramid model and data.

{ah A simple acoustic velocity model (b Eight shots using the model in (a)

Elastic Finite Differences

We now turn our attention to discrete simulation of vector elastic data. We can do
this using either Equation 2-35 or Equation 2-36. Choosing the first equation leads to
a method that is essentially the same as the pure explicit finite difference algorithm
discussed in the previous section. To gain a slightly different perspective, we base our
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formulation on Equation 2-36 and again we limit ourselves to the 2D case. In somewhat
more familiar notation, Equation 2-36 becomes Equation 2-80.

% — -1 (9’[1,1 + (9"[1’2
ot 8x1 3x2
% — -1 1911,2 + aTZ,Z
ot 8x1 (93C2
It v v,
2-80 LI +2u)=2 + 12
( ) ot (A ZH) z9x1 A 83(2
Ity Jvq vy
at H (axz + o
Y duy v,
at A&xl + (A +2y) oy

We note that v, is the horizontal velocity and v, is the vertical velocity of a particle at
any given position in space.

In this case, Equation 2-42 (the evolution equation) becomes Equation 2-81, where v, H,
A and B are given by Equation 2-82 through Equation 2-85, respectively.

(2-81) N o Hv+s
o
T
(2-82) V= [01, U2, T11, T12 Tz,z]
(2-83) H=AZ B
- o ax,
0 0 p' 0 0]
0 0 0 pto
(2-84) A=|A+24 0 0 0 O
0 u 0 0 0
A0 0 0 0
(0 0 0 p' O
0 0 0 0 pt
(2-85) B={0 A 0 0 0
u 0 0 0 0
0 A+2u 0 0 0
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Recall that the solution of Equation 2-81 has the form of Equation 2-86.

t
(2-86) v(t) = efy(0) + f eHS(t - 7)d7
0

Equation 2-86 is immediately recognizable as a convolution in time. Thus, the
progression from initial state to final state is really just a recursive convolution at each
time stamp f. The well known series expansion for e* provides an immediate approach to
providing a discrete evolution equation for the solution vector v(t). The resulting scheme
is equivalent to the Lax-Wendroff methodology and so will not be discussed further. If
you are interested, you are encouraged to work out the mathematical details.

Staggered Grids

What we would like to develop is a finite difference solution to the system in Equation 2-
81. We could, of course, use the higher order difference formulas developed through the
use of the system in Equation 2-72. Several authors (Jean Virieux and A. Lavender) have
suggested that somewhat higher accuracy might be achieved through the use of smaller
time and space increments. Thus, their idea was to simply rewrite Equation 2-72 in the
form of Equation 2-87 and Equation 2-88.

Ax Ax
(2-87) ulx + —) +ux - —) @+ du? Ax? N o' Axt
- = u(x
2 ox>4x2!  Jdxt16x4!
u(x + Ax) +u(x - Ax) 2 A2 J'u Axt
(2-88) 2 B R TR T

This equation, of course, results in a difference formula of the form in Equation 2-89.

PR - i
(2-89) 52~ ZO w;u(x — EAX)

Note that in Equation 2-89, the actual derivative is still estimated at a fixed grid point,
but the accuracy is based on half the sampling increment.

At first glance, it might seem that a discrete solution of the system in Equation 2-80
using formulas based on half derivatives would require significantly more storage
than using formulas defined at the normal sampling increments. However, it turns out
that this is not the case if we first simplify the notation by defining [v, w, 0,&,(] =

[vl, Vo, T12, T12, 72/2] so that we can then write vf =0 (iAx, jAy, kAt) for any sampling rate,
and similarly for w, o, &, and C.
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A fourth order scheme in space and a second order scheme in time to solve Equation 2-
80 can then be expressed as Equation 2-90.

k+1/2 _ _k-1/2 -1 ﬁ ( k _ k )
Yji T U TP A\ Tin T Oiap,
At
a2tk
P AL (012 = Tli2)
W12 R -1 ﬁ ( k _ -k )
1212 = Winpjnn T Puapjp A \Jirtieie = Oijrp

-1 - _
tp i+1/2j+1/2 Ay (Ci+1/2,j+1 Ci+1/2/j)

At
k+1 _ k (k12 k+1/2
(2-90) o = oz.+1/2,].+()\+2[u)i+1/2,j Ax(vl.ﬂlj ol )
= k+1/2  _ k+1/2
+ Aisip, Az(wi,j+1 i )

k+1 _ k At k+1/2 k+1/2
Cinipj = Ci+1/2,j+(/\+2/“l)i+1/2/jg( i1~ Wij )

+ /\i At( k+1/2 k+1/2)

+112j A, \Tij+1 ij
k1 ok At iap kg
5z',j+1/2 = Ez',j+1/2 + lul',]'+1/2£(ui,j+l — U )

At k+1/2 k+1/2
+ “i,j+1/2§(wi+1,j ~ U )

The major difference between this and the usual sampling increment scheme is that the
different components of the velocity field are not known at the same node. The actual
size of each grid is identical to that of a more traditional equally spaced approach so
staggering the grid does not change the overall size of the problem

Figure 2-18 and Figure 2-19 demonstrate staggered grid propagation graphically. The
first of these figures show how the model parameters intermingle with data values at
each grid node. The second figure shows how each stencil for each of the propagating
wavefields is applied. Note that going from one time stamp to the next requires you to
cycle through an application of four different stencils.
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Figure 2-18. Distribution of variables and parameters (p,¢;) in a 2D staggered grid
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Figure 2-19. Staggered grid fnite difference stencils.
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It is clear that synthesizing data over elastic models requires significantly more
computational resources than when the model is acoustic. Simple isotropic elastic
models are described by six volumes, while VTI and full elastic models require seven and
eight volumes, respectively. In addition to this increase in storage, the computational
load increases by at least one order of magnitude.
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Figures 2-20 through 2-24 provide clear examples of simulations over both isotropic
elastic and VTI models. Figure 2-20 illustrates an isotropic elastic version of the
SEG/EAGE salt model along with representative inline compressional and shear
responses. Figure 2-21 and Figure 2-22 show similar images over the Marmousi2
isotropic elastic model. Figure 2-23 and Figure 2-24 provide graphics of the full VTI
model and VTI shot responses.

Figure 2-20. Isotropic elastic SEG/EAGE salt model with compressional and shear
shot response.
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Figure 2-21. Marmousi2. Isotropic elastic version of the original Marmousi data.
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Figure 2-22. Marmousi2. Synthetic horizontal particle velocity and vertical
particle velocity.
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Figure 2-23. Hess Corporation VTI model. Available from the SEG.
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Figure 2-24. Hess-VTI. Synthetic Particle Velocities

(). Horizontal Particle Velocity (b). Vertical Particle Velocity
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Predictor-Corrector Schemes

Equation 2-86 can be approximated by a first-order difference to produce the Euler or
forward predictor scheme in Equation 2-91.

(2-91) V(1 + DAH = v(nAt) + AtHv(nAt)

You can get a second order scheme by averaging the predicted value with the current
value as shown in Equation 2-92.

(2-92) v[(n + 1)Af] = v(nAt) + %[Hv(nAt) + HV(nAb)]

In this case, the x;, x,, and x; differentials are replaced with suitable central differences,
and Equation 2-92 is used as a predictor-corrector scheme of second order.

Splitting
It is possible to rewrite Equation 2-81 as Equation 2-93, where A, By, and E; are given
by Equation 2-94 and Equation 2-95, respectively.

(2-93) A WA YA
) ot~ ox dy
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00100 00 O0O01
00010 00010
(2-94) Ag=[1000O0| By=/00O0O0 O
00000 0 01000
01000 10000
p 0 0 0 1
0p 0 1 0
0 O A+2u - O
(2-95) E) = A+2u-p2  (A+2u)*—p2
0 0 —u A+2u 0
A+2uP-p2 (A2 -2
00 0 0 i

Ifwelet V. = Eyv, F = Ayv,and K = B,v, then Equation 2-93 takes the form of
Equation 2-96.

IV _OF 0K

(2'96) E = a + 8_y

Equations of the form in Equation 2-96 are called divergence free. These equations are
easily split into two much simpler equations which are then solved by splitting methods.
The simple conceptual idea is to solve the equation in one direction and then the other,
followed by reversing the solution order for the next time stamp. Suppose we let L,
represent one finite difference update using only the x variables and L, represent one
finite difference update using only the y variables. The general process for updating then
uses the formula in Equation 2-97.

(2-97) v =LLLLV"

Thus, all we have to do is specify one or the other of the solution schemes L,, or L,, and
we will have the other, completely by symmetry. A fourth order in space, second order
in time predictor-corrector scheme for L, takes the form of Equation 2-98.

_ . At

k k k k
Vi = Vit [ (7Fi, —F) - (Fi; ~ Fi))|
(2-98)
Vk+1 _ 1 Vk V At 7F F F F
i =5 ij t i,j+g{( ij —Fisj) — (Figj - i—lj)}
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Propagation Stability

Each of the various finite difference methods you might construct contains a ratio of
the form Z—Avt, where v is one of the spatial increments Ax, Ay or Az. It might come as
somewhat of a surprise that if this ratio is too large, the propagation scheme it helps
define will not be stable. An unstable scheme will eventually produce excessively large
numbers and exceed the numerical accuracy of the machine it is running on.

Derivation of a formula that can provide an accurate bound for these ratios requires
that we first relate frequency to wavenumber. To do this in a simple manner, we begin
with the 1-D version of the Lax-Wendroff discrete pressure equation (Equation 2-17), as
shown in Equation 2-99, where v is velocity.
1 O &Zip AP 82;9
2-99 —|p(t + At) - 2p(t) + t—At—Z—,—, =0*—
(2-99) pvel I ) = 2p(t) + p(t - Af) 24 57 2 Y

i=2

To make our life a bit easier, we assume a solution of the form exp[ik,x — wAt] and
ignore the higher order terms to obtain the dispersion relation in Equation 2-100 and
Equation 2-101.

1 4 | S({wAt
(2-100) A—t2[2 cos(wAt) — 2] = 7 smz(T) = v2ki
2 At
(2-101) - sin(wT) = vk,

Although the true dispersion relation for the 1-D equation has c = kf, Equation 2-102 says

that the discrete velocity is greater than the true velocity.
v
sin(m fAt)
nfAt

(2-102) D=

Thus, to avoid explosive growth, we must have the relation in Equation 2-103.

2 (Ax,,;
(2-103) At < —(M)
TC

vmax

A similar analysis shows that to achieve stable isotropic elastic (P — SV') waves, we must
have the relation in Equation 2-104.

A .
(2-104) Af < —2min

T[22
\[U5 + V%,
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The important aspect of this analysis is that we cannot choose our time step size
arbitrarily. We must use the appropriate version of Equation 2-103 or Equation 2-104

to assure ourselves that the calculations we perform and, consequently, the waveform we
produce will not grow exponentially.

Model Boundaries

This section describes the things we must do to handle model boundaries, which can
consist of either free or non-free surfaces.

Free Surfaces

Handling a free surface is probably the most complex of the various problems that arise
in seismic modeling exercises. The literature on this aspect of the synthesis is quite vast
and outside the scope of what we wish to discuss here. We leave detailed investigation of
this to you, if you are interested.

However, one of the more appealing methods is discussed by Lavendar in his 1988 paper
on P-SV modeling, and illustrated in Figure 2-25. The essential difference lies in how
each layer is handled. Turning free surface reverberations on (or off) controls whether
or not synthetic data contains multiples and ghosts.

Figure 2-25. Free Surface versus Non-Free Surface Layers

(@). Free Surface Boundary Layers (b). Non Free Surface Boundary Layers
I ] ] [

The free surface at the top of the model is padded above with a fictitious set of nodes.
Since a free surface implies that no normal or shear stresses are active there, we can set
7,, = 0 and 7,, = 0 at the top. The shear stress boundary condition is handled by setting
it to zero at z = 0 as well. The normal stress is not defined at the top boundary but is
forced to zero by making the normal stress antisymmetric for the first two rows above
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the free surface, as shown in Equation 2-105.
(TZZ)—l,i = _(TZZ)O,I‘

(2-105)
(722)_2,1' = _(722)1,1'

Non Free Surfaces

There are a variety of approaches for handling the other boundaries in a typical seismic
Earth model. The three most popular methods are what are called sponge boundary
conditions: Absorbing, boundary conditions, and the so-called perfectly matched layers.

Sponge Boundaries—Absorbing

The idea behind sponge boundary conditions is to modify the propagating equation by
adding viscosity to the equation along the boundary. This is normally accomplished by
writing Equation 2-106, where y is an absorbing parameter chosen to produce a wave
that decreases in amplitude with distance.

d p|_ -V 1 p
(2-106) E[q]—[—pvzv-%v _y”q] +[0]

The value of y is usually chosen to have exponential decay within the defined boundary
zone and is zero within the model dimensions. Note that when y = 0, the solution to the
equation is, in fact, p.

For the finite element method, sponge boundaries can be implemented by changing the
definition of (U, V) to Equation 2-107, where « and f are the damping factors in each of
the boundary layers.

2
(2-107) (U, V) = (1 +a) fo %UVdQ + (p+1) fQ %VU-VVdQ

Sponge Boundaries—Paraxial Boundary Conditions

Paraxial boundaries are based on the one-way wave equation and within the boundary
layers take the form in Equation 2-108, where |a;| < % for all j (Higdon 1991).

(2-108) H[(casaj) % - v%} p=0
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. . 9 I . i
This equation works because each factor, cos(aj)g—’; — 9%, is an annihilator of any wave

ox’
arriving at an angle aj.

Sponge Boundaries—Perfectly Matched Layers

Perfectly matched layers are a modern treatment of the sponge boundary conditions. In
this setting, the spatial derivatives are modified so that we have Equation 2-109.

d 1 4

— H - N =~

dx 1 4 90 gx

@

(2-109)

FEM versus FDM Differences

The finite element method (FEM) and finite difference method (FDM) are alternative
ways of approximating solutions of partial differential equations. The differences
between FEM and FDM are:

e FDM is an approximation to the differential equation while FEM is an
approximation to its solution.

e The most attractive feature of FEM is its ability to handle complicated geometries
(and boundaries) with relative ease. While FDM is restricted, in its basic form, to
handling rectangular shapes and simple alterations of those shapes, the handling of
geometries in FEM is theoretically straightforward.

e The most attractive feature of FDM is that it can be very easy to implement and
does not require the inversion of an extremely large matrix.

¢ In some cases, FEM can be considered to be equivalent to FDM. Choosing basis
functions as either piecewise constant functions or Dirac delta functions produce
a FDM type method. In both approaches, the approximations are defined on the
entire domain, but need not be continuous.

e FEM is generally considered to be more mathematically sound then FDM, and
more accurate. Typically, the quality of the approximation between grid points is
excellent in FEM but poor in FDM.

e The quality of an FEM approximation is often higher than in the corresponding
FDM approach, but this is extremely problem dependent. There are numerous
examples to the contrary.

Generally, FEM is the method of choice in all types of structural analysis problems, but it
has not proven to be of tremendous value in seismic simulation or migration. The biggest
reason for this is the tremendous size of the impedance matrix, S, which means it is quite
difficult to handle.
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Two-Way Implicit Modeling

With the exception of the finite element method, the two-way approaches described
earlier are what are usually referred to as explicit schemes. They forward march source
samples one step at a time. The finite element method is close to an implicit approach
since finding the solution requires the inversion of a matrix. There are certainly
approaches to seismic modeling that can be framed in an implicit sense, but those are
equation dependent and will not be discussed further in this book.

One-Way Modeling

Although its not quite mathematically correct, Equation 2-17 is sometimes factored into
two first order equations. The factorization leads to two separate first-order equations in
z. Equation 2-110 illustrates the nature of the factorization.

(2:110) 9 _ |1 _91aflo |10 _919]|
) 0z v J*  dxpox|| oz v 9f*  Jdxpox p=

In the case where the density, p, is constant, or, even better, equal to 1, the equations
simplify further and are what are usually used when applied as part of a migration.

Clearly, the thought process to arrive at this product assumes that the two cross-product
terms commute, and thus their difference is zero, but this assumption of commutation
is simply not mathematically correct. Nevertheless, is can be shown that suitable
approximations to either of the first-order equations that result from the factorization
honor the wavefront travel times of the original two-way equation. Because wavefields
are no longer allowed to travel in any direction other than upward or downward, the
amplitude of the propagation cannot be correct.

In the case of normal full-wave propagation, the impinging wavefield energy creates

a new source at the point of impact. Regardless of source wavefield type (that is,
compressional or shear), the new source radiates energy in all directions weighted by the
reflection strength for upward traveling wave, transmission strength for the downward
traveling waves, and angle of the reflecting bed. This is an extremely important concept
for all of the discussion that follows. It actually allows us to think in terms of separating
wavefields into upward only and downward only propagation directions. Each factor in
Equation 2-110 does precisely that. The first factor governs downward only traveling
waves while the second permits only upward traveling waves.

Once a suitable approximation for the square root term has been found, almost any of
these methods can be applied to synthesize data of the type required by the equation.
That is, when the downward factor is used, you can propagate wavefields downward

but not upward; when the upward factor is used, you can propagate wavefields upward
but not downward. Thus, these equations greatly limit the extent to which full wavefield
seismic can be generated.
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One Way Implicit Finite Difference Methods

There are many known approximations for the square root in Equation 2-110. Each
such approximation has its own pros and cons, and each has its own unique limit to
the downward propagation angle it will tolerate. One of the better known square-root
approximations is Equation 2-111.

4 -3X°
4-X*

(2-111) 1-X*=1-

If we apply this approximation to the square root in Equation 2-110, we obtain
Equation 2-112.

2-112 —
( ) 2 92 axpc?x vot 49 9139

2 47 3219
\/1 d Jd1ld 18 02 ot dx p Ix
? o> Idxpox

Equation 2-112 leads directly to a downward propagation equation of the rather complex
form in Equation 2-113.

43;9 dp1dp
8]0 18p zﬂ?_ ;p&x
(2-113) dz vdt 4P 214

2 I* dxpox

At first glance, this equation may seem to be somewhat intractable for any finite
difference approach. The trick to putting this into a more useable form is to clear
fractions to obtain Equation 2-114.

(2-114)
[iﬂ_apwp]av [4&_@1@]1@+3@1@_i&zp

v 9 dxpox Jz v 9 dxpdx|uvot dx p dx 2 9P

Equation 2-114 in 3D becomes Equation 2-115.

48;7 dpldp dpladpldp (48;9 dp1dp &pl&p]l&p
v

@119 [‘ 77 ‘%x‘a—m—y]

2 = P oo ayody|oar
8p18p &pl&p) 4&;7
+3 -——
dxpdx dypady) v?
If we then approximate the derivatives via some form of the finite difference stencils

discussed in previous sections, we can rearrange the problem, converting Equation 2-113
into a matrix style system of the form in Equation 2-116.

(2-116) Ap(z + Az) = Bp(z)
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Solving this system amounts to inverting A. The need to employ finite-differences in
time can make this a very complicated task in 3D. Consequently, this XT method has not
enjoyed a lot of popularity in either forward modeling or imaging for 3D projects.

Fourier-Based Methods

This section discusses the several Fourier-based methods for solving modeling and
imaging projects.

FX Finite Difference Methods

The factorization in Equation 2-110 can also be done in the Fourier or frequency domain
by simply rewriting it in the form of Equation 2-117.

(2-117) GNP SN | (AP A P
) oz '\ dx p dx || 0z 72 dxpox|”

In this case, Equation 2-114 becomes Equation 2-118.

40>  dpldp)\dp 4w  dplap)iw
(7?*5;5)& = \F P o) P
3&;91&;9 4w?p

2

(2-118)

dxpdx v

In 3D, Equation 2-118 becomes Equation 2-119.

40*  dpldp dpldp)d 40* dpldp dplap)i
dw? L Oplop dplop\dp _ (4w’ Opldp  dpldp)iw
v? dxpdx dypdy) dz v? dxpdx dypdy| v

(3219, Ip1Ip) A
dxpdx dypdy v?

(2-119) (

Equation 2-119 has the generalized form in Equation 2-120.

(2-120) A(w)p(z + Az) = B(w)p(z)

Once again, inversion of A(w) is a necessity. In the frequency domain, this matrix is
normally diagonally dominant and usually relatively easy to compute. Note that we are
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solving this as an equation in z for each w. We are in effect computing p(z + Az) from
p(z) so that the A(w) matrix has two dimensions and not three. This further simplifies the
issue and makes this method one of the more tractable one way implicit methodologies.
Nevertheless, the process is not straightforward and usually requires a splitting approach
to make it efficient.

One clear advantage of this approach to one-way forward modeling is the elimination
of finite difference approximations in time. In the frequency domain, the partial
differentials are simple complex multiplications. Since they are applied across the entire
frequency band, the temporal derivatives are as precise as they can be.

Pseudo-Spectral Methods

Pseudo-spectral methods are based on the utilization of Fourier transforms in the
calculation of spatial derivatives (see D. Kosloff and E. Baysal). Again, using the 2D
version of Equation 2-17 as the base, we first apply a central difference scheme in the
time direction and then use Fourier transforms to calculate all spatial derivatives. As an
example, consider the discrete formulation in Equation 2-121, where L represents the
discrete operator containing the spatial derivatives in both x and z.

@120 =20 - - PP

. . p1d
To calculate the discrete version of the term a—p——p,
X p dx

direction on p, multiply by the discrete-spatial wave-number ik,, and then inverse Fourier

we first Fourier transform in the x-

J
transform to get a_i‘

dp1ldp

This is followed by a repeat of a Fourier-multiply-Fourier inverse step to get R

When the process has been completed along all x-lines, a similar calculation is performed

dp 1o
to get -2,

Working in 3D is just as simple and requires only that we perform one more transform
sequence in the y direction.

The great advantage of this process is accuracy. Using the Fourier transform for the
spatial derivatives is identical to applying a central difference with the number of
coefficients equal to the half length of the discrete transform.

. . . . u .
Once we understand that the Fourier transformation converts differentials, a—” into

X’
frequency domain multiplications of the form ik, u(x), it is quite natural to want to
Fourier transform Equation 2-17 over all variables and convert the resulting PDE into

a simple algebraic equation. Unfortunately, because the velocity, v(x, y, z), and the

Chapter 2. Seismic Modeling 63



Fourier-Based Methods Panorama Technologies

density, p(x,y,z), are both potentially functions of three independent variables, Fourier
transformation would result in a frequency domain convolution, which is not a much
simpler algebraic equation.

Constant Velocity FK Modeling

When the velocity, v, is constant, Fourier transformation over all the variables produces
Equation 2-122 everywhere except at the source.

2

2
(2-122) K+ K- “U)—z) uk,, k,, @) = 0

Thus, for k, and u(k,, k,, w), we get Equation 2-123 and Equation 2-124, respectively.

w2

N

(2-123) k= 4|2 K

V2

2
(2-124) uk,, k,, @) = u[\/ % _ i, kx,a)]

The key point is that we only need to know p(z = 0, x, t) to determine k, through a Fourier
transform over x and t.

Thus, to do modeling, we simply define p(0, x,,t) = s(x,,t), set p(0,x,t) = 0 elsewhere,
Fourier transform over x and t, define p(k,, k,, @) through Equation 2-123, and then
inverse transform to get our one-way modeled data p(z, x,t). Whether this represents
upward or downward traveling waves is purely dependent on the choice of sign in
Equation 2-123.

Since this method is almost totally dependent on extremely efficient Fourier transforms,
you would think that modeling using this method would be very popular. Unfortunately,
the equations in this section are valid only when the velocity is constant. As we will

see, overcoming this limitation has produced many of the modern one-way algorithms
for imaging, but has not resulted in a satisfactory formalism for detailed high resolution
modeling. Methods in this section can progress wavefields in one direction or the other,
but unlike the two-way methods, they do not automatically generate waves traveling in
every possible direction.

Phase-Shift Modeling

When the velocity, v = v(z), is just a function of z alone, and the density, p, is constant,
we can Fourier transform over ¢, x to get Equation 2-125.

(2-125) i 4K
) 022 | v¥z) " P
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If we now factor Equation 2-125 and choose the downward propagating equation as the
one of interest, we can write Equation 2-126.

o _ | [ar

oz 2z e

(2-126)

If we think of this equation as a first order ordinary differential equation in z, we can
immediately write its solution in the form of Equation 2-127, where k, has the value in
Equation 2-128.

(2-127) pk,, z + Az, w) = explik,Az] p(k,, z, @)
0)2 2
(2-128) k=vz B K

Note that the exponential term in Equation 2-127 represents a pure phase shift for each
frequency w. The process is visualized quite naturally in Figure 2-26. Starting at the
top for downward propagation and at the bottom for upward propagation, the one-way
phase shift method simply shifts the wavefield from one layer to the next in a simple
and straightforward manner. To start the modeling process, you initialize the wavefield
p(z = 0,x0,t) = s(xy,t) at z = 0 with a suitable source, Fourier transform over time and
begin downward propagation using Equation 2-127

Figure 2-26. FK domain depth-slice by depth-slice continuation for v(z) velocity
models. This is called phase shift modeling.

While we recognize that the accuracy of the phase-shift method is highly dependent on
the number of terms we use to approximate the series for the exponential, the ultimate
accuracy is dependent only on the current computer language approximations for the
exponential and the square root. The ultimate limitation of this method, like the pure FK
method discussed previously, is the restriction that the velocity vary only in the vertical
direction. The frequency slice process specified by Equation 2-127 has an immediate and
more or less obvious extension to 3D.
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Phase Shift Plus Interpolation (PSPl) Modeling

When the sound speed, v(x, z), varies laterally as well as vertically, the wavefield shifts
are no longer uniform. One approach to handling this problem is to first perform a
number, n, of pure phase shifts using a uniform set of of velocities lying between the
minimum and maximum values of v(x, z). Interpolation of the appropriate wavefields at
any given x along the common depth slice at z approximates the wavefield corresponding
to the true velocity v(x, z) at x. Figure 2-27 illustrates the concept.

Figure 2-27. PSPl FK domain depth-slice by depth-slice continuation for v(x, z)
velocity models.

The problem with this approach revolves around the complexities of performing the
interpolation. Key questions arise as to whether interpolation in space-time or frequency-
space is the more optimum method. Because of the difficulties associated with the need
for interpolation, PSPI continuations frequently have difficulty imaging steeply dipping
events. As a result, considerable research focused on finding a better approach.

Dual Domain or FKX One-Way Methods

Because of the incredible efficiency of the Fast Fourier transform, it did not take long
for several authors to investigate the possibility of avoiding the need for wavefield
interpolation by using approximations that split the computations between the FK and
FX domains. This required multiple transforms for each up or down shift, but because
of the efficiency of the Fourier transform, this was considered worth the extra effort.
The idea underlying this form of the process is again a Taylor series approximation. If
the velocity, v(x, z) varies laterally, the first-term Taylor series expansion of the k, term
in Equation 2-128 around some fixed reference velocity, v,.; = v,¢(z), has the form of

Equation 2-129, where s,.; = Uif is the reference slowness and K./ = 872 = K.
dk

(2-129) k=K + —ZAs
dsref
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In this case,

(2-130) =

Using the approximation in Equation 2-111, a little algebraic manipulation yields
0)2

2

ref

dk, 2k
(2-131) =w|l+ S 3
dSref 4kref - Skx

Equation 2-131, so that Equation 2-132, where kfef =

2

2%k
(2-132) k. ® \JKnp = ki + @A + wAs———
ake,s - 3k

You could, of course, use additional terms of the Taylor series to try to increase the
accuracy of the approximation, but, as we will see, the third term in Equation 2-132 can
be quite difficult to implement.

Split-Step Methods

Paul Stoffa at the University of Texas in Austin was one of the first to utilize Equation 2-
132. He and his colleagues in Austin and at Delft University in Holland simply truncated
the series for k, to Equation 2-133, and then noted that the first term was just a phase
shift in the FK domain while the second is a similar phase-shift in the FX domain.

(2-133) kzzw/kfef—ki+a)ll— ! ]
0

Ore f

Summing over all frequencies produces the image at the current Az. Fourier
transforming back to the FK domain begins the process for the next z + Az. Although
this method proves to be somewhat inaccurate when compared to good implementations
of PSPI, it is significant in that it requires no interpolation at all. It provides a direct
correction in the FX domain after an initial phase shift.

Extended Split Step Methods

The extended phase screen method is probably more accurately referred to as split-step
plus interpolation or SSPI. It attempts to increase the overall accuracy of the preceding
process by using multiple reference velocities in exactly the same manner as PSPI.
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Higher Order FKX Methods

Higher order methods based on Equation 2-132 must find ways to handle the third term,
Equation 2-134.

26

(2-134) K = whs———
TEREY

While it might appear that this term can be handled directly by some form of transform
between the FK and KX or maybe FX domains, the denominator implies the existence
of a singularity and therefore a potentially difficult instability. Two approaches have
evolved in an attempt to handle the instability. One is the phase-screen or pseudo-phase
screen method of Ru Shan Wu at the University of California at Santa Cruz and the other
is the Fourier Finite Difference (FFD) method of D. Ristow and T. Ruhl. In fact, both of
these methods use what is called an implicit finite difference technique to implement the
term stably.

Note that from an implementation point of view, what we do in practice is first form
Equation 2-135, inverse Fourier transform over k, and form Equation 2-136, and finally
try to compute Equation 2-137 in some domain or the other.

(2-135) p, (ke 2 + Az, @) = exp (K A2) plk,, 2, w)
(2-136) p,(x,z + Az, ) = exp (iwAsAz)
(2-137) p(x,z + Az, t) = exp (ikaldAz) p,(ky, z, )

It should be clear that because the third term contains both spatial and wavenumber
terms, this calculation might not be straightforward. The actual trick is to approximate
the exponential one more time in the form of Equation 2-138, substitute into Equation 2-
137, and clear fractions to get Equation 2-139.

2
. 2k Az

1+ za)Asz—"z—
k7o r 3k 2

. 2% Az
1- ZO)ASZ—XZ—
4kiop 3k 2

(2-138) exp (ik["Az) =

(2-139)  (4ky; — 3k: — iwAS2K;AZ) plky, z + Az, @) = (4kiy — 3K, + iwAS2kLAZ) p,(k,, 2, @)
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If we now inverse transform back to the FX domain, we see that each ki term becomes

a second order partial derivative with respect to x. When these are replaced by central
difference approximations, we arrive at a matrix equation of the form in Equation 2-140,
so that Equation 2-141.

(2-140) Ap = Bp,
(2-141) p=A"Bp,

What is nice about this method is that the matrix A is usually sparse with a limited
number of terms along the diagonal, so in 2D, as described here, inverting the matrix is
relatively fast. Moreover, the result is easily stabilized.

However, in 3D, the equivalent A matrix is huge and is quite difficult to invert. The
problem is usually solved by a splitting technique similar to that in previous sections.
Essentially, Equation 2-139 is solved in the x-direction, and then the similar y-direction
formula is used to provide a solution in that direction. These methods are alternated

as the process proceeds depth-slice by depth-slice until all data is propagated to the
appropriate depth.

Figure 2-28 is a simple graphic of how one-way propagators work. Figure 2-28(a)
provides the schema for synthesizing purely downward traveling waves, and part (b) is
the corresponding propagator for purely upward traveling waves. While these kinds of
propagators limit the type of wave that can be propagated, their significance lies mostly
in the fact that they are much more computationally efficient then the full two-way
versions shown in previous figures. One-way computations can be performed on a depth-
slice by depth-slice basis so there is no need to fill in the value at every previous node
before continuing. Moreover, extremely efficient Fourier domain methods can be used

to reduce computational complexity even further. As a result, one-way methods have
enjoyed great popularity and have been the subject of considerable research.

Figure 2-28. A one-way propagator. The black dots have been removed from the
propagating stencil. Graphic (a) calculates only downward traveling
waves while (b) only permits upward traveling waves.
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A Word About Sources

This section describes the sources used to generate the sound waves that are at the center
of the seismic migration and modeling process.

Compressional and Shear Point Sources

So far the discussion has been focused on compressional, wave-point sources.
Theoretically, such sources radiate energy uniformly in all directions. Mainly because
they are easy to generate, point-sources represent the norm in modern seismic data
synthesis and acquisition. In media that support shear wave propagation, pure
compressional sources also generate shear waves uniformly in all directions. In contrast,
real shear wave sources are not so easy to generate, and are impossible to generate in
any liquid. Over any media that supports their propagation, shear waves are frequently
generated using some kind of scratcher or angled compressional source. In the first
case, the scratcher is actually generating a physical source that is fundamentally angled
downward, while in the second case the angled compressional source generates most
of its energy close to the angle of the compression gun. In either case, the resulting
converted-shear wave is frequently too weak to generate sufficient energy for practical
use.

Plane Wave Sources

Plane wave sources are all but impossible to generate in the field. However, any
reasonable set of shot profiles, u(x,, x,,t), from either real data or synthetic data,
can be transformed to simulate a plane wave source at some fixed position, x, , by
simply performing a slant stack over the sources surrounding this central point. The
mathematical formula for this in 2D is given by Equation 2-142.

(2-142) U(p,, sy, X, ) = f Uy, %, T - p- (¥, - x,) dx,

This formula has a natural extension to 3D, so plane wave shots can be generated for
linear moveout in each coordinate direction.

Figure 2-29 describes graphically how a plane wave source is generated from a set of
shot profiles. Each source in the set is delayed (or advanced) in time by an amount
determined by the desired plane wave moveout and its distance from the central source.
The delayed shots are then summed to produced the desired plane wave response. This
process is repeated for each required plane wave.
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Figure 2-29. Generating a plane wave source by delaying shots.

Plane wave sources produce a wavefield with a particular takeoff angle. Normally,
takeoff angles are measured in degrees from level with zero representing a plane

wave in the vertical direction. In the sense that only one plane wave can be generated
with this take off angle, the resulting track is unique and the full plane wave is
completely determined by this takeoff angle. Figure 2-30 conceptualizes the basic idea
in ray theoretic terms. Here we see a plane wave with an apparent takeoff angle of
approximately 30 degrees traveling through the subsurface media, as indicated by the
ray, and striking a steeply dipping reflection event. The angle of the plane wave at this
point also uniquely determines the raypath back to the source so either angle contains
sufficient information to completely determine the raypath.

Figure 2-30. A plane wave source and ray.
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Figure 2-31 illustrates a plane wave propagating through the Marmousi2 model.

Figure 2-32 is the actual response of the plane wave in Figure 2-31. While not something
the typical geophysicist is familiar with this plane wave shot response can be migrated
and imaged just like any traditional point source response.

Figure 2-31. Plane wave sources in the Marmousi2 isotropic elastic model.

(a). Plane Waves at 688 ms (b). Plane Waves at 1360 ms
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Figure 2-32. Plane wave response over the Marmousi2 model.
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Huygen’s Principle and Integral Methods

One of the most powerful seismic modeling concepts, known today as simply the Huygens
Principle, was expressed some 350 years ago by both Christiaan Huygens and Augustin-
Jean Fresnel (Wikipedia contributors, “Huygens—Fresnel principle”, Wikipedia, The Free
Encyclopedia, Wikipedia link):

The Huygens-Fresnel principle (named for Dutch physicist Christiaan
Huygens, and French physicist Augustin-Jean Fresnel) is a method of analysis
applied to problems of wave propagation (both in the far field limit and in
near field diffraction). It recognizes that each point of an advancing wave
front is in fact the center of a fresh disturbance and the source of a new train
of waves; and that the advancing wave as a whole may be regarded as the
sum of all the secondary waves arising from points in the medium already
traversed. This view of wave propagation helps better understand a variety
of wave phenomena, such as diffraction.

For example, if two rooms are connected by an open doorway and a sound is
produced in a remote corner of one of them, a person in the other room will
hear the sound as if it originated at the doorway. As far as the second room
is concerned, the vibrating air in the doorway is the source of the sound. The
same is true of light passing the edge of an obstacle, but this is not as easily
observed because of the short wavelength of visible light.

Huygens principle follows formally from the fundamental postulate of
quantum electrodynamics that wavefunctions of every object propagate over
any and all allowed (unobstructed) paths from the source to the given point.
It is then the result of interference (addition) of all path integrals that defines
the amplitude and phase of the WAVEFUNCTION of the object at this given
point, and thus defines the probability of finding the object (say, a photon) at
this point. Not only light quanta (photons), but electrons, neutrons, protons,
atoms, molecules, and all other objects obey this simple principle.

While we frequently drop his name and simply call this Huygens principle, Fresnel’s
contribution cannot be minimized, but the part we really need to understand is
visualized in Figure 2-33. This principle is usually explained conceptually by saying that
the way Huygens arrived at it was based on observations of what happened when he
dropped a finite number of balls, N, into the Zuider Zee. When the balls were arranged
in a line, what he saw was not N independent events, but something like to a moving
line. He saw an envelope of the wavefields rather than the independent wavefield of
each separate ball. That being said, it is much more important to think in terms of the
formal discussion above. Perhaps a better example of the Huygens—Fresnel principle
would be to recognize that a discussion in an adjacent room would actually appear to
come from the connecting door. Clearly, the door is acting as a new source and the
listener only hears the sound coming from that source.
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Figure 2-33(a) shows this for two-way waves and emphasizes that fact we need not think
of a single reflector. Parts (b) and (c) of this figure show what happens when waves are
allowed to travel in only one direction.

Figure 2-33. A simple graphical interpretation of the Huygens-Fresnel Principle.
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We see that the wavefield due to a reflector, the red flat line in parts (a), (b), and (c), can
be thought of as the envelope of an infinite series of point sources. Each point source can
be thought of as having been ignited by an impinging wavefront which in part (a) results
in both a reflection and a transmission. Parts (b) and (c) visualize what happens when
propagation is only allowed upward (b) or downward (c).

The Mathematics of Huygens’ Principle

One of the more mathematically complex ways to use this principle is to recognize that
regardless of the type of media (that is, acoustic, elastic, or anisotropic), we can think
of the total response of any give source in terms of what happens at any given point in
the actual model. For example, a source on the surface eventually arrives at some point
(x,y,z) with reflectivity R(x,y, z). According to Huygens’ principle, the energy of the
source then generates a virtual source at (x, y, z), the energy from which then propagates
through the entire model, and then perhaps to receivers on the recording surface. In a
nutshell, what this really means is that we need only know the response of each point
in our model to completely reconstruct the entire wavefield u(x,y, z, t). For the pressure
formulation, this concept is mathematically expressed in terms of the so-called Greens’
function G(%,%,, ) as shown in Equation 2-143, where X = (x,y, z) is a generic point in the
medium and %, is the vector location of the source.

9°G

2-143 —
( ) 7

1
— pv?V - EVG =06(x -

For a given source, s(x,, t), integration by parts allows us to express the solution p of
Equation 2-17 in the integral form of Equation 2-144.

(2-144) P, 1) = f CR T, 1) 5@, 1) do, dt
Q
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This means that the solution to the equation is just the sum of all the point responses of
the medium under consideration.

For example, when the velocity and density are constant, the Green’s function takes the
form in Equation 2-145 and Equation 2-146.

ot =)

(2'145) G(jc)/?sz t) =T s =
47t|x — X

[x—=x;|
S(ﬁ)/t - )

2-146 ,t = _,—_f)
( ) p@, 1) ey

Thus, p(x, t) is the superposition of all the point responses in the medium due to a source
at the point x;, = (X0, Y, 20)- Another way to say this is that the Green’s function, G, is the
inverse of the operator in Equation 2-147.

-1

(2-147) G= 8—2— *V lv
- atz P o

Seismic Scattering

In integral form, these formulas lead to what has become known as domain-integral
methods for solving seismic scattering problems. Although they are important because
they divide the seismic propagation scheme into incident and scattered parts, these
methods have not been popular for seismic modeling so they are of only a little interest
to us.

In theory, the ideas can be based on any of the equations above, but for illustrative
purposes, we only consider the pressure case when the density is constant. The basic

. . . . 1
idea is to assume that the velocity, v, can be expressed as the slowness difference - =

% - Cl, where ¢, is constant. We can then write Equation 2-148, so that our solution takes

0 .
the form of Equation 2-149, where p"* is defined by Equation 2-150.

15 1 1\d%

(2-148) [Vv—aﬁ]p—sgyt)—(a—z)?
(2-149) (1) = im+f(l—1)a—2p
pE b =p J\&~c) o

Chapter 2. Seismic Modeling 75



Raytracing Panorama Technologies

(2-150)

pinc _ fs(fz)rt_ |J_C)_7C>s|/v)

4n[d — X,

Although a bit of a stretch, Figure 2-34 illustrates Huygens’ principle in considerable
detail. Here we see the wave reflections and transmissions at each point in a given
medium.

Figure 2-34. Wave directions and exploding reflectors.
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Raytracing

For a source at x, and receiver at x,, if we denote the traveltime or phase from x, to x, by
¢(x,, x,) and the amplitude decay by A(x,, x,), we can then write Equation 2-151 in space-
time and Equation 2-152 in frequency.

(2-151) G(x,, x5, t) = A(x,, x5)0(t — p(x,, x;)
(2-152) G(x,, x,, w) = A(x,, x,)e@?(rs)
Substituting into the wave equation in Equation 2-153, we get Equation 2-154.

iw?
(2-153) (V -V - ?) G(xr, Xs, C()) =0
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2 1 .
(2-154) {iwz[(Vgo) - (x)] +iw(2VA - Vo + AAp) AA}eW =0

Equating coefficients of powers of iw to zero yields the Eikonal equation, Equation 2-
155, and the transport equation, Equation 2-156.

2 1
(2-155) (Vo) - 00"
(2-156) 2VA-Vo + AAp =0

Simultaneous solution of Equation 2-155 and Equation 2-156 provides the traveltimes
and amplitudes necessary to approximate the Green’s function in an efficient manner.

While not straightforward, the Eikonal equation, as given here, can be solved by finite
differences and/or the method of characteristics. It is called the method of characteristics
because it solves the Eikonal equation along rays by simultaneously solving Equation 2-
157 and Equation 2-158. The method of characteristics is usually referred to more
traditionally as raytracing.

dx
(2-157) ic P
dp 3 1
(2-158) do VIZU(X(G))]

In this case, o typically represents arc length along the characteristic or ray, and x(o) is
the position of the ray vector at the distance ¢ from the initial position of the ray. The
process is usually initialized by setting x(0) = x, to the initial source position and setting,
as shown in Equation 2-159.

sina cos 8
sina sin f8
s COS &

(2-159) p0) =

Once x(0) is known, the desired traveltime is computed by integrating along the
characteristic curve in Equation 2-160.

do’

(2-160) px(a,p,0)) = fo 2(x(v, B,0))
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Figure 2-35. Ray Fan versus Eikonal traveltime phase
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Raytrace Modeling

Figure 2-37(a) provides an example of how Huygens principle factors into construction
of a raytrace-based response to exploding reflectors. Given a point on a reflecting surface
(the red circle in the figure), a ray from a source point simulates an exploding the point.
Rays emanate from the point in all directions and are recorded at surface receivers. Since
any reflecting surface can be considered as a set of such points, the sum of all their point
responses will produce, in the worst case, a reasonable approximation of what we would
see if we ran our full two-way propagator for this model.

Figure 2-37. Huygens Principle as it applies to raytrace modeling

(@). Exploding a point reflector ~ (b). Raytrace amplitude corrections
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Figure 2-37(b) hints at one of the more complicated parts of accurate raytrace modeling.
Reasonably accurate raytrace amplitude responses require that we correct for several
important factors. These include source-to-reflection point decay and reflection-point-
to-receiver amplitude decay, as well as obliquity factors based on the incidence and
reflection angles. The phase of secondary arrivals also require correction.

Depending on how it is structured, raytrace modeling can be one of the most
computationally efficient modeling methods available, and can easily model virtually
any type of recording geometry. As indicated in Figure 2-37(c), raytrace modeling is
easily modified to achieve fixed or common offset modeling. Its chief drawback is that
multiples and other multiple arrival events are very difficult to include in the model.
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While we tend to think of raytrace modeling in the sense of the isochron in Figure 2-
37(a), this may not be optimum. Figure 2-37(d) shows raytrace modeling formulated in
terms of equal traveltime curves or surfaces. The yellow curve in this figure represents
all the reflection points for which the sum of the traveltime from a source to any point
on the yellow line and back to a receiver is identical to that from any other reflection
point. To produce the amplitude response at this time requires only that we sum all
reflection amplitudes at these locations into the trace at this fixed time. If you already
understand Kirchhoff migration to some degree, this concept should be very familiar.

Figure 2-38 provides proof of concept that the ray-based synthesis methods outlined here
actually work. In this figure, the model is on the left and the ray based synthetic shot is
on the right. The phase function, ¢, and amplitude decays, A, were calculated using the
method of characteristics along with a simultaneous solution to the transport equation.

Figure 2-38. A raytrace shot over the SEG AA’ 2D model.

While the raypath concept is sufficient to understand plane wave issues, in most

cases, we emphasize that the full plane wave generated by the source is much more
complicated. Because of this fact, it is possible to generate a full wave response from an
appropriately sampled bundle of ray theoretic plane waves. Figure 2-39 demonstrates
this in terms of what are more precisely called Gaussian beams. What we see in this
figure is part of the full response due to two plane wave raypaths. The blue lines indicate
what are called central rays, while the red lines indicate wavefronts calculated directly
from the central rays. The wavefronts are actually calculated using a finite difference
technique specified by theoretical formulas analogous to those on which our one and
two-way propagators are based. In addition to dynamically determining the amplitude

80 Modeling, Migration and Velocity Analysis



Panorama Technologies

Raytrace Modeling
at each point on the red lines, a Gaussian weight is applied to ensure that the sum of all
such waves faithfully represents the forward traveling wavefront. The name Gaussian

beam is derived from this weighting methodology

Figure 2-39. A partial wave response due to two rays.

Figure 2-40 shows the kinds of events that each of our schemes can model successfully

Figure 2-40. A brief comparison of modeling methods
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Figure 2-41 summarizes the differences between three modeling algorithms. The left
hand side represents full two-way propagation, the middle image shows one-way
propagation, and the right side shows single arrival raytrace-based modeling. Note that
neither the full one-way nor the single arrival raytrace-based response have any reflected
waves.

Figure 2-41. Basic model differences. Left is full two-way, middle is one-way, and
right is single arrival Kirchhoff shot response for shot in center of

model.
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Zero Offset Modeling

At this point, our understanding of modeling is based on a two-step process. A source
of some kind is initiated at time, { = 0, and it is then allowed to propagate into the
Earth according to some form of propagating equation. We also understand that each
subsurface point in the Earth, whether part of a reflector or not, can be considered as

a point reflector. After some length of time, energy from the source reaches the point,
and, according to Huygens Principle, initiates a new source at the location of the point
reflector. The point reflector then acts as a internal source which radiates energy in

all directions. Some of this energy reaches the surface as a reflection and some of it
continues into the Earth to ignite other point reflectors creating additional sources

until the energy is exhausted. What we record at the surface is the reflected energy at a
widespread array of receivers with some offset from the source position. What we lose
is the energy that never manages to get reflected. In such synthetic experiments, we can
record all the information we want. If desired, we can even record zero-offset data, but
to do that we have to set off sources at each location where we want a receiver. This
means that, at considerable computational expense, we must forward propagate a source
for every coincident receiver location.

In the early days of reflection seismic processing and interpretation, there was seldom
enough computer power to produce an appropriate number of shots to enable synthesis
of stacked sections. It was natural to attempt to find a way to produce all the traces in
zero or short offset ensembles. It does not take much effort to come up with a reasonable
approach. The Huygens principle tells us that if we can determine the response from any
single subsurface point, all we have to do to produce the receiver wavefield is to sum all
such responses into the receiver and we are done.

Let’s consider the zero-offset response of a single point-reflector. If the traveltime from
the source at s, to the point-reflector at r is t,,, the traveltime from the reflector back

to the source is also t,, because the energy reaching the receiver at the source position
must travel the path (or paths) from the source to the point-reflector in reverse. This
means that the total traveltime from the source to the reflecting point and back to the
receiver at the coincident source location is just 2¢,. This statement must be true for
every coincident source and receiver on the recording surface, so the zero offset response
of the point reflector is the sum of the response for each source, s;, on the recording
surface.

The trick to understanding how to efficiently synthesize zero-offset responses is simply
to realize that if the velocity, v, of the medium is divided by two and we set off an
explosion at the point reflector at ¢t = 0, then what we will record on the recording
surface is exactly the time 2t,. Thus, exploiting Huygens Principle in Figure 2-33,

the zero offset response for any given model can be obtained by simply dividing the
velocity by two, setting off explosions at each subsurface point reflector, and recording
the response at the surface. The only problem with this trick is that the zero-offset
response obtained in this fashion will have odd period multiples whenever a free-surface
is present.
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Figure 2-42 shows what happens in the subsurface, and Figure 2-43 shows what we get
at the surface when we synthesize exploding-reflector-zero-offset data. The far upper left
image shows the subsurface exploding reflectors just before they explode. The remaining
figures demonstrate how the wavefield propagates to the receivers.

Figure 2-42. Exploding reflector synthesis.
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An easy way to understand the comments in the previous paragraph is through watching
the movie schematized in Figure 2-44. This move was made in the late 1980’s or early
1990’s from a model derived from a 3D two-way migration of DMO-corrected Gulf of
Mexico stacked data. It is based on what turned out to be an inaccurate interpretation
of the salt flank, but it is still an interesting case study.

Figure 2-44. Exploding reflector movie. The best way to understand exploding
reflector modeling is through a movie.

= macaw-reflector.mpg
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Chapter 3

Historical

This chapter examines the history and evolution of modern seismic migration methods.
Modern migration methods evolved from simple geometric concepts to complex
wave-equation techniques. The major driving force for such dynamic changes is the
overwhelming need to transition from doing calculations using pencils and paper to
analog calculators and finally to modern digital computers. This section reviews that
process and provides a firm foundation for the geometric concepts that led to the modern
era.

It should be noted that modern geophysical mathematical concepts governing wave
propagation in complex geologic media have been studied and developed before the
current epoch. Many of these theories date back to the early 20th, the 19th, and even,
in some cases, the late 18th centuries. While the scientific foundations were definitely
available, many early geophysical explorationists tended to ignore them and rely instead
on what might be called more ad hoc methodologies. What we use today is the result of
a lengthy trial and error stumble urged on by the need to find hydrocarbons hidden in
more and more difficult to find traps.
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Data Acquisition

During World War I (1914-1918), sound waves from exploding bombs and other
ordinance were detected many miles from the explosion point. Noise from the operation
of submarines was detected over even greater distances. These two observable events
are thought to have lead to the speculation that one could detect geologic bedding
planes by recording the sound energy from a surface explosion. Oil companies around
the world began to research whether or not such an idea might be possible. One of the
early investigators into this idea was a physicist named Reginald Fessenden. Figure 3-1
describes Fessenden’s scheme for locating geological formations using a sound source.
The source in this case was essentially a vibrator not unlike what we call a vibroseis
today. The technique is also virtually identical to what would ultimately became sonar
for locating submerged submarines.

Figure 3-1. A graphic describing the essence of R. Fessenden’s 1917 patent for
devices to generate and record seismic energy.
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While I am quite sure that Fessenden was completely convinced that his device would
work, his belief was not shared by all. Thus, it was necessary to prove empirically that
a surface sound source would generate reflections from geologic formations, and that
such reflections could be recorded at the surface and mapped or interpreted to find
hydrocarbon bearing traps.

At this point in time, making a microphone, or what we now call a geophone, was very
expensive and each such device was very heavy. Thus, in the very early days, very few
receivers were used to record the response of each shot. Figure 3-2 shows a typical four
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microphone recording from 1928. It is believed to be one of the first seismic recordings
to empirically verify that reflections from subsurface formations occurred and could

be detected. The large oscillations at the beginning of this shot profile indicate the

first arrival of energy from the source. The arrival indicated by the arrow as well as
those above it are all reflections from the Cimarron anhydrite in central Kansas on the
Seminole Plateau. The fact that these amplitudes were actually reflections was verified
by drilling a well at the end of a line of four receiver shots.

Figure 3-2. A single trace recording
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Zero Offset Hand Migration

Given records like that in Figure 3-2, early explorers made a stickmap that might have
looked something like the one displayed in Figure 3-3. The times defining the event in
this figure would most likely have been based on the identified arrival from the closest
trace to the shot point. They would have liked to have a trace in which the shot and
receiver were coincident. But, because they were using dynamite, this would have
resulted in the destruction of the receiver, and so they settled for receivers that were
close to the shot. In Figure 3-2, the closest trace would have been the time pointed to by
the arrow with a shot-receiver separation (offset) of about 100 meters. This separation
would have to suffice as an approximation to a trace with coincident source and receiver.
Such traces were called zero-offset traces.

Figure 3-3. A simple non-flat horizon
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The black line graph in Figure 3-3 represents what is called a zero-offset or unmigrated
time section. What is necessary for exploration and drilling is a depth map, or, when the
velocity is constant, a migrated time map as conceptualized by the red line graph. In
this case, the red line was simply drawn in free-hand, but represents the major features
of what might be the true migration position of a reflected horizon. Note in particular
that after migration, the peak of the anticline has not changed position, but its width has
shrunk. It is also true that the positions of dipping events have moved up-dip in every
case.

90 Modeling, Migration and Velocity Analysis



Panorama Technologies Zero Offset Hand Migration

To produce the red-line section in Figure 3-3, we need to know how to convert
unmigrated arrivals into migrated arrivals. Figure 3-4 shows the relationship between
zero-offset reflections and their correct migrated position. The true reflector has a true
dip angle of «, while the apparent or recorded event is at dip angle 5. In this figure, the
data is assumed to have been recorded over a constant velocity medium. Note that the
location of the migrated event is placed relative to vertical time or depth, but remember
that this vertical positioning is only valid for constant velocity media. Since the velocity
is constant, vertical depth is given formally by the traditional relationship, where depth
is equal to velocity times one-way time, that is, d = vt/2 or t = 2d/v.

Figure 3-4. Fundamental migration geometry between the apparent location and
dip  versus the migrated location and dip a.
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Migration in a two-dimensional, constant velocity medium requires only that we know
the sound speed in the medium, and can measure the ratio of the change in arrival
time to the corresponding horizontal change. As indicated in Figure 3-5, this is usually
specified in seconds per trace divided by the trace spacing, but any time interval and
corresponding spatial interval will do. The formulas listed in the figure provide all
necessary calculations to determine the migrated position of any given event. Note
again that in this simple medium, vertical depth is easily obtained by multiplying the
vertical time, ¢, by the medium sound speed, v. Note also that events with any given
apparent dip migrate up-dip. Consequently, we can ignore the sign of any given value
and simply place the migrated dip element at its appropriate up-dip position. As we will
see, extension of this formula to a vertically varying medium is quite easy.

Figure 3-5. Fundamental migration trigonometry relating the apparent location
and dip specified by S and j versus the migrated location and dip
specified by S’ and a.
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Figure 3-6 extends the migration formulas in Figure 3-5 to a three-dimensional constant-
velocity medium. These equations provide the necessary computational formulas to
complete the migration process. Here, however, it is a bit more difficult to actually

do the migration by hand. At this point, the migrated position must be contoured to
produce a migrated map of the recorded event.

Figure 3-6. Fundamental migration trigonometry relating the apparent location
and dip specified by the S and  versus the migrated location and dip
specified by S’ and a.
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Beginning in the late 1940’s and continuing until the early 1960’s, all interpreters used
this approach to produce migrated prospect maps. The equations were employed in a
two-step manner, where calculations proceeded in the line direction, and were then
followed by similar calculations in the cross-line direction.
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Figure 3-7 shows an example of an unmigrated or zero-offset map. This map is from an
early interpretation done over a salt dome in the Gulf of Mexico at South Pass Block 89.
Faults and the large truncation surrounding the large salt dome are clearly evident.

Figure 3-7. An unmigrated (zero-offset) time map of a salt structure in the Gulf of
Mexico. This particular map was contoured in 1972 or 1973 from a
two-dimensional grid.
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The vectors graphed in Figure 3-8 are the result of using the equations in Figure 3-6.
A computer was used to generate and plot the vectors. Note the significant change in
the shape of the salt structure and note also that some of these vectors are over two
miles in length. It is important to observe that any 2D migration of the red line will
be inaccurate. Not only does its subsurface position migrate up-dip, but its shape can
change quite dramatically. This is a basic reason why 3D imaging is so superior to 2D.
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Figure 3-8. Migrated vectors from the map in Figure 3-7 computed using the
formulas in Figure 3-6.

Shot Profile Hand Migration in Two Dimensions

Picking traveltimes from a short-offset trace to approximate zero-offset arrivals and
thereby produce a zero-offset section works well when neither the velocity nor the
geometry of the local formations vary dramatically. It breaks down when velocity
variation is strong, when the structure of the subsurface horizons is complex and when
assuring that the current pick is on the same formation as the last pick is difficult.

The first approach to alleviating at least some of these problems was to increase the
number of geophones in each shot profile. Instead of using a handful of receivers on one
side of a shot, “split-spread” shooting, as shown in Figure 3-9, became prominent. After
each shot was recorded into multiple receivers, one half of the receivers were picked up
and moved to produce a new split-spread array for the next shot. For example, in the
diagram in this figure, the receivers on the left would be moved so that the left-most
receiver is just to the right of the right-most receiver. A new source would be discharged
and recorded into the newly positioned array. As this process continued, complete
coverage of the subsurface reflector is accomplished. As shown in the left hand trace
graphic in Figure 3-10, trace-to-trace correlation is now much easier, and subsurface
mapping is supposedly simplified.
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Figure 3-9. A typical 2D shot diagram from the mid 1960’s to around 1975. These
were used in split-spread shooting arrangements.
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Figure 3-10. Detecting dip. The amplitude and direction were defined by a slant
stack.
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A key question that needed an answer was what does dip really look like on a shot
record with a large number of receivers. Could shot-record dip be used to estimate the
location of the reflecting horizon?

These questions were not focused so much on dip, but on whether or not you could
estimate the dip from the shot profile and then figure out where the reflection came
from. Figure 3-10 shows Rieber’s 1936 solution to the question of estimating dip. He
delayed each shot linearly (right hand side of the figure) and summed up the amplitudes.
When a large amplitude was found, the delay required to find it defined the emergence
angle, and so gave insight into both the arrival direction and the amount of subsurface
dip that produced it. He was probably the first to recognize the importance of summing
over lines (slant stacks) to reduce the problem to one of simply detecting an amplitude.

96 Modeling, Migration and Velocity Analysis



Panorama Technologies Shot Profile Hand Migration in Two Dimensions

Unfortunately, I am not aware of anyone who took advantage of Rieber’s methods in any
detail during his day. It was not until the advent of modern computers that his method
came to the forefront in the form of plane-wave or beam stack approaches to imaging.
However, using information from a shot profile still became a viable approach to more
accurate subsurface mapping.

Figure 3-11 shows what an aspiring geophysicist named Klaus Helbig was given as a test
in 1952. It was his introduction to geophysics. He is a well known German geophysicist
who is still alive at this writing and is a wonderful source of historical information about
how geophysics was done prior to the advent of powerful computers. I am indebted to
him for many of the figures and exercises in this section. Figure 3-11 shows a synthetic
shot profile on the right. The problem, given an assumed velocity of 3000 meters per
second, is to find the reflection point that generated the shot record on the right. As
described in Figure 3-12, the problem is easily solved by applying Pythagorus’ theorem,
and Figure 3-13 provides the numerical answer to the problem. This calculation requires
close attention to the different signs, but essentially everything still moves up dip. Even
at the modest production rates of the fifties, it was unavoidable that errors crept into the
several hundred calculations that had to be performed by hand. As Helbig says:

Other companies must have had their way of dealing with this problem. In our
company, a two-dimensional slide rule was used. While it was not absolutely
fool proof, it simplified the calculations drastically and forced the operator to be
consistent. Consistent sign errors are more easily detected than random errors.

Figure 3-11. A test for an aspiring geophysicist.
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Figure 3-12. Klaus Helbig’s solution to the problem of Figure 3-11.
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Figure 3-13. The numerical solution to the problem in Figure 3-11.
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It is worth noting that we can use virtually any two picks from the shot record displayed
in Figures 3-11, 3-12, and 3-13 to perform a migration. Such picks can be from any pair
of traces within the shot profile, so, technically speaking, we can migrate the shot record
in a very detailed manner. It is also worth mentioning that what is happening is shot-by-
shot migration. It was done by humans as opposed to a digital computer, but it is still a
shot-by-shot or shot profile migration.

Performing the computations involved in migration by hand is clearly difficult. Even in
two-dimensions, this process was fraught with error. As a result, there was a strong push
to automate the process to be able to choose well locations quickly and more accurately.
One of the first such devices, as shown schematically in Figure 3-14, might best be
described as a plotting device.

Figure 3-14. A simple machine for drawing reflectors at positions determined by
the solution to Klaus Helbig’s “thought problem.”

As drawn, it cannot directly calculate the value of x (Equation 3-1) in Figure 3-12,
but given a bit of experience by the interpreter, it can produce very accurate stickmap
interpretations of true subsurface horizon locations.

O Atty L, Xyt X

(3-1) YT A2’ 4
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Again, according to Klaus:

A temporary vertical line is drawn at horizontal distance x down to the (expected)
position of the reflector element. A ruler graduated in distance traveled for given
times (times are displayed on the scale) is placed so that the zero-mark is at the
source S and the actual traveltime at the intersection with the temporary vertical
line. With the ruler firmly held in place, a small set square is placed against the ruler
to draw the forward part of the reflector elements. The set square is graduated at
half the scale of the rest of the drawing. This simplifies the drawing of the lengths

of the parts of the reflector elements (about half as long as the corresponding surface
spreads).

While it is not really a migration machine, it does foretell the kind of device that would
follow to reduce the computational complexities associated with the constant velocity
and straight ray formula of Figure 3-12.

Curved Rays

Until this point in time, rays underlying seismic imaging were implicitly assumed to

be straight. Allowing the velocities in our Earth model to vary requires that we allow
rays to refract or bend. The concept is illustrated in the cartoon of Figure 3-15. Because
light travels at different speeds in air and water, it refracts. Thus, the bowman must
shoot below the image of the fish he sees in the water to hit it. When velocities vary
significantly, failure to accurately account for reflections along bent rays can cause
significant misplacement of subsurface events. This is particularly true in subsalt

plays, but is generally true for almost all prospective areas. When this was recognized,
migrations began to enter what might be called the depth era. Doing this properly
increased the need for a more automated method for producing the stick map images.

Figure 3-15. Fishing with a bow and arrow
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If the bowman is to hit the fish, he must properly account for the way in which light
refracts as it passes from the water into the air. Similarly, the seismic program must
account for the way sound is refracted when it passes from one layer to another. Both
processes, in fact, obey Snell’s law, which states that the ratio of the sines of the angles
of incidence and refraction is equivalent to the ratio of velocities in the two media, and
is also equivalent to the inverse of the ratio of the indices of refraction. For example,
when a sound wave is reflected from R in Figure 3-16 and travels toward the surface,
it is transmitted through each layer according to Snell’s law. This relationship is stated
mathematically in Equation 3-2.

Figure 3-16. lllustration of Snell’s Law
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As long as the velocity depends on depth only, curved rays can be incorporated into the
migration process by solving the problem layer-for-layer and then integrating. Since
depth is unknown beforehand, it is more consistent to sum over vertical time, that is,
over the time along a vertical ray. While specific cases can be solved exactly, the general
case of arbitrary dependence of velocity on depth requires the two approximations
shown Figure 3-17. As will be seen in later sections, the exact traveltime from surface to
reflector is given by an infinite series.
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Figure 3-17. Curved ray corrections
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Thus, the upward traveling wave refracts based on its emergence angle, 7, in the layer
just above it. When it finally reaches the surface with an emergence angle of i, it has
traversed the path indicated in Figure 3-17. The formulas integrating v(t) over 7, provide
the necessary estimate of x. The curved ray formula for x is given by Equation 3-3,
where 7, the well known root-mean-square (RMS) velocity, is given by Equation 3-4.

ARl , Xt Xy

3-3 _
(3-3) YT A2 1

(3-4) 5= \/% f * 2(r)dr

Equation 3-3 is important because it tells us how to do an approximate migration when
the velocity varies vertically and when rays are allowed to bend or refract. It also
provides the mathematical basis for a machine doing the complex migration calculations.

Figure 3-18 shows how the migration formulas in Figure 3-17 can be used, in principle,
to construct a machine for performing the migration for a given i—i and an average
squared velocity given by Equation 3-5.

) o

— f i v*(1)dt

to

(3-5) G
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Figure 3-18. Principle for a analog device for event migration.
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For a given =2 the input values for Af and Ax are input on the left and the migration

distance is read off the sliding cross arm on the right. The different parts of this relation
are assigned to corresponding sides of two similar triangles.

Chapter 3. Historical 103



Curved Rays Panorama Technologies

Figure 3-19 should clarify these comments. Since most reflections were visible on all 24
traces, the Ax setting and the 7? setting remains generally constant, at least during the
calculation for a single shot record. Since lateral velocity variation was considered to be
small, 7* also did not change appreciably. What did change was At. This change resulted
in a swing of the machine’s arm and consequently devices like that in Figure 3-19 became
know as Swing Arms. Figure 3-20, from A. W. Musgrave’s dissertation at the Colorado
School of Mines, shows a real migration machine of the type described figuratively in
Figure 3-19.

Figure 3-19. An early migration machine design.
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Shot Profile Hand Migration in Three Dimensions

Dipping events are usually from three dimensional reflectors. Figure 3-21 shows one
possible approach to figuring out the 3D nature of reflections from dipping events by
recording into orthogonal receivers. The idea is to measure and use apparent dips in
crossline and inline directions as we did in Figure 3-6 to estimate the distance and
direction of the migrated position from the current one.

Figure 3-21. Using a “tee” to detect dip in three dimensions.

The “tee”

N
A

Receivers Shot point

Dip Element

Figure 3-22 shows two late 1940’s vintage Amerada Petroleum seismic records showing
a “single-end shot record” and what they called a “tee” record for determining the
parameters for the calculations described in previous figures. The right-hand side of
each record is the single ender while the left-hand side represents the “tee”. This kind
of cross-spread shooting foreshadowed acquisition of seismic data using orthogonal shot
and receiver lines.
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Shot Profile Hand Migration in Three Dimensions

Figure 3-22. A “tee” on the left and a single-ended spread on the right in both

Modeling, Migration and Velocity Analysis
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Figure 3-23 shows the simple mathematics of locating the source of the reflected event
when there is dip in the x and y directions. This is a 1940’s vintage description of how
Amerada Petroleum’s scientists approached the problem. This kind of solution was
considered a top-secret technology in all oil companies of the day.

Figure 3-23. Amerada Petroleum’s solution to using the “tee” to resolve 3D dip.
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Remarks about Migration

Much of what has been discussed so far is what we might call early shot-by-shot
migration. Early practitioners of the imaging art were forced to use what they had.
They did not have access to modern computers, so sorting data into any other order
was impossible because it had not been recorded, impossible because the technology of
the day was not capable of doing it, or impossible because it was just too difficult and
expensive to consider. There wasn’t any way to estimate velocities from recorded data,
so shot-by-shot event imaging was the only practical approach.

Without redundancy, velocity information was obtained only by trial and error. If,

when tested, a given v(z) was shown to be in error, a new v(z) was selected and used to
produce a new stick image. This process was repeated until the result was considered
geologically reasonable. This meant that a different flat Earth, vertically varying velocity
was being used for each new geologic setting, even if the new location was close to the
previous one. It also meant that a large number of different velocity functions might
have to be tried before a suitable one was found.

The basic steps in historical shot-by-shot imaging are summarized in the following list:

1. Estimate little dip elements from shot-profile records: Single-ended, split-spreads,
and “tees”.

2. Calculate the distance from the shot-point to the image point using relatively
simple math.

3. Place the image point at the estimated depth or vertical (migrated) time to produce
a “stick” image.

From a computational viewpoint, this suggests that more than one set of calculations

based on Figure 3-17 might be necessary to produce an accurate stick image of any given
horizon of interest.
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Redundant Data

When multi-fold acquisition consisted mostly of 2D data, receivers were laid out on
either side of a centrally placed source. Figure 3-24 shows that this split-spread shooting
resulted in redundant data that can be sorted in a variety of ensembles or gathers. In
this figure, we see common or fixed-offset, common-receiver, and common-mid-point

or common-depth-point gathers. Holding the offset fixed produces sections that, when
the offset distance is small, look remarkably like zero-offset profiles. Notice that the
term common-depth-point really has very little to do with a subsurface point. It is exactly
equivalent to a surface source-receiver midpoint. This is also true of common-offset
data, where the offset is measured at the surface. Moreover, these data are completely
described when the source and receiver locations for the given trace are known. All
other information can be computed from these locations.

Figure 3-24. Split-spread acquisition geometry.
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These data, while usually referred to as 2D, actually have three dimensions: source
position, receiver position and time. Alternatively, they can be thought of as having
common-midpoint, offset, and time as their coordinate system. However we specify the
surface data, the resulting volume is three dimensional.
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Figure 3-25 shows the split-spread response of a subsurface containing a single reflection
point. At the top left, we see the entire response and then, clockwise, the next four
figures show a common-offset slice, a common-time slice, a common-angle slice, and a
common-midpoint slice. We will see that there are migration algorithms that allow us to
migrate data organized in any of these domains.

Figure 3-25. Split-spread point response. The response of a single point to
split-spread acquisition.
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Redundant data have many advantages. In the early days, the major advantage arose
because they can be sorted into common-mid-point (CMP) order to produce rough
estimates of velocity. Although not completely accurate, these velocity estimates were
thought to provide the velocity 7% so important in the migration approach discussed
above. The accuracy of velocities estimated in this way is a function of many things, but
the lateral velocity variation due to reflector dip and the velocity variation due angle of
propagation can render such estimates almost useless. Only when the Earth is absolutely
flat, and there is no variation of velocity with angle of propagation, can such velocity
analysis produce accurate values. Nevertheless, the velocities estimated in this way
represented a major step forward in improving the accuracy of migrations. Without these
estimates, the production of subsurface images probably would not have arrived as early
as it did.
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Figure 3-26 shows how redundant data provides estimates of velocity. The left side

of this figure shows a typical common-midpoint gather. The traces all have the same
midpoint, and, if the subsurface reflectors are all flat, the hyperbolic curve in red

defines the appropriate velocity to use to correct the data to zero offset time, ¢,, and
ultimately to produce zero-offset data. Special analog computers were designed and used
to estimate 7?(t,) at as many midpoints as possible. Another analog computer stacked the
traces in the CMP and the resulting section was migrated using formulas just like those in
the previous paragraphs.

Figure 3-26. Flat Earth Society processing to zero offset
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The right hand side of Figure 3-26 shows the application of a dynamic correction known
as normal moveout (NMO) to correct the hyperbolic response to a flat one. Part of

the definition of NMO from Wikipedia (Wikipedia contributors, “Normal Move Out”
Wikipedia, The Free Encyclopedia, Wikipedia link):

Because the wave must travel along the hypotenuse created between the depth of

the event and source-receiver offset, the time delay increases hyperbolically along
equally spaced geophones. The hyperbolic distortion must be corrected in order to
accurately image the subsurface.

The result of summing the dynamically corrected traces for every CMP is called a stacked
section.
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Swing Arms

This section presents additional information about swing arms, which were mechanical
devices enabling you to migrate dip data. See also Curved Rays on page 100 for more
information about swing arms.

Isopachs and Isochrons

In view of the comments in the preceding sections, one conclusion becomes quite
clear—any apparent reflection on any given trace could have come from any point on
an equal traveltime subsurface isopach. An equal traveltime isopach is that set of points
in the subsurface whose traveltimes from the surface and back (two-way times) are
identical. Figure 3-27(a) shows an equal traveltime curve in a constant velocity medium
for zero-offset reflections. Clearly, if all we have is a zero-offset trace, we can only infer
that the reflection could have come from any point on the equal-traveltime isopach
defined by the reflection time.

Figure 3-27(b) provides the simplest mathematics defining an equal traveltime curve. It
also shows how the apparent horizon (dotted line) is imaged as the envelope (dark solid
line) of a set of equal traveltime curves.

Figure 3-27. Equal traveltime curves in a constant velocity medium.
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For any given arrival on a recorded seismic trace, all potential locations from which
this arrival could have been reflected lie on a circle with the source point as the center
and the velocity-time depth as the radius. If we trace out a circular isopach for each
source, the envelope of all such isopachs will be the location of the actual reflecting
surface. Since the velocity is assumed to be constant, these circular isopachs can also be
thought of as isochrons, or curves and surfaces in time rather than depth. Regardless of
terminology, a swing-arm built on this principle has a significant advantage over hand
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plotting each vector to migrate the given dip data. An entire zero-offset stick map could
be migrated with a constant velocity without every resorting to any calculations at all.
Of course, the constant velocity assumption meant that the results might not be accurate,
but they could be redone quickly. A different constant velocity could be used for each
surface position to at least make the resulting migrated stick map as close as possible to
subsurface truth.

Operators

Figure 3-28 provides the time response on the surface for a single point reflector in the
subsurface.

Figure 3-28. Operators and operator migration—Point reflector zero-offset
response
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Every time on this time domain curve is the two-way time from the surface source to
the point reflector and back to a receiver at exactly the same location as the source. The
time recorded at A" below C is actually the time it would take for sound to travel from
a source at C to the point reflector below S and back to a receiver at C. As indicated in
Figure 3-28 for a constant velocity medium, the set of all such times can be calculated
quite easily using Pythagorus’ theorem.

2
(3-6) T:\/T§+(C_TS)

In a more complex velocity medium, the curve would not be a circle, but would still
represent the zero-offset reflection times from the point reflector. Zero offset responses
are quite easy to calculate, and raytrace modeling is fully capable of calculating such
responses in virtually any medium.
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The operator approach to migration computes an operator curve, intersects it with each
input trace, selects the amplitude at the intersection time, and then adds it to the image
point or output location on or near the top of a downward facing frown. In actuality, this
is completely equivalent to the previous diffraction-based approach. They both produce
the same result, but this one is a bit more difficult to understand. Figure 3-29 shows an
amplitude at A being moved to the top of the zero-offset response curve and added to the
reflection point location at B. In general, all the amplitudes that intersect the operator
would be summed into the top of this curve at point B. However, the only non-zero
amplitude point that we can see is at A. As the process continues, each and every point
on the apparent or unmigrated reflector is moved to the top of the associated zero-offset
response curve and added to the appropriate spot on the migrated image represented by
the solid line in Figure 3-29.

Figure 3-29. Operators and operator migration—Zero-offset response or operator
migration
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The three-dimensional figure on the right illustrates all the amplitudes from surrounding
traces that contribute to the trace in the middle. These frowns are called operators, but
they are really the modeled response of a point reflector at some subsurface location.
The important thing is the process and not the shape of the zero-offset response.

This approach to migration is somewhat more difficult to understand than the spray
approach of the previous section. Why it works should become much clearer in the
chapter on seismic modeling. However, one thing should be clear, it is based on
modeling a point reflector and not on the possible locations from where the reflector
might have come.
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Non-Zero Offsets

Figure 3-30 shows the ellipse representing the set of points whose traveltimes from a
source at S to a receiver at R are identical. Producing this kind of curve in variable
velocity mediums became practical with the advent of digital computers. Migration of
fixed-offset data follows the same principles at shown in the zero offset case shown in
the bottom image in Figure 3-27. There is, of course, a corresponding non-zero-offset
operator-based approach to migration. Raytracing is used to compute the traveltime
from any given source to a reflection point, then from the reflection point back to the
receiver on the surface. Operator migration then proceeds in the same manner as it did
in Figure 3-28.

Figure 3-30. Fixed offset equal-travel-time curves.
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It is clear from Figures 3-27 through 3-30 that if we wish to use the concepts involved

in the most general possible case, we must compute traveltimes from any given source

to a potential reflection point and then back to a fixed receiver. Just prior to the advent
of digital computers and to some extent beyond that time, efforts were made to do just
that. Analog devices were designed to compute these traveltimes in the form of wavefront
charts.

The mathematics in Figure 3-31 was used to compute the wavefront charts in Figure 3-
32. It is not important to understand the mathematics. What is important is that the
formulas provide a method for calculating the two-way traveltimes from any point on the
surface to any point in the subsurface of a v(z) medium and back. Today, the traveltimes
originally chosen from wavefront charts are easily and very repetitively computed via
raytracing. What is also important is that this approach was known and used in the mid
1950’s for performing complex migrated stick figure reconstruction of picked seismic
arrivals.
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Figure 3-31. Wavefront chart mathematics
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The wave front charts in Figure 3-32 are based on the mathematics of Figure 3-31. The
charts represent the velocity functions in Equation 3-7, where n = 0 is constant velocity,
n = 1 is standard chart (constant velocity gradient, rays are circles, fronts are spheres),
and n = 2, which is more realistic, but in the pre-computer days, difficult to generate.
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Figure 3-32. Wavefront charts
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It may not be clear from these figures, but the construction of any given wavefront chart
is based on the utilization of circles to generate rays. This should not be too surprising
since, for any given constant velocity, the point response is defined by the equation of a
circle.

Once the concept, as shown in Figure 3-33, is understood, it is quite reasonable to
construct a mechanical device to both calculate the wavefronts and also produce stick
figure images. By the late 1950’s and into the early 1960’s, machines were constructed
to perform migration based on the wavefront charts in Figure 3-32. Thus, Figure 3-33
is a geometrical picture of the mechanical basis for a machine such as A. W. Musgrave’s
wavefront charting machine shown in Figure 3-34. Note the charts on the surface.

This machine is actually an analog device for raytracing. I don’t know about you, but
this looks like a printing press to me. Unfortunately, no such machine appears to have
survived.

Figure 3-33. The geometric basis for A. W. Musgrave’s migration machine
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Figure 3-34. A. W. Musgrave’s migration machine

It is important to note that in the real world, because the sources and receivers are at
discrete locations, we must consider our measured seismic data to be digital in character.
Since modern data is also digital in time, reflection seismic processing today is purely
digital. Since the wavenumbers of propagating plane waves carry information about

the angle of propagation, this suggests that there will be some issues with regard to the
aliasing of dipping subsurface reflectors. The impact of aliasing on our ability to image
subsurface events will be discussed in subsequent sections.
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Stacking and DMO

The primary purpose of this section is to provide a simple understanding of why certain
parts of early digital processing techniques did not image all of the Earth’s structures.
This, in effect, is an interpretation issue. We will see that what might be considered
easily imaged events are sometimes totally invisible in the seismic record. In many such
cases, parts of the subsurface structure may be invisible simply because we have not
applied the most accurate available technique to image it. In other cases, its absence
may be due to improper noise suppression techniques applied during the preprocessing
steps. Whatever the cause, the idea is always to be able to understand what approach
produces the best image.

What is Stacking and DMO?

As we will see, migration can be split into four conceptual pieces. As a rule of thumb,
these four pieces will help us understand what migration is and how it naturally
completes the imaging process.

1. The first piece is called normal moveout (NMO). When the world is flat, NMO
corrects for the fact that the source and receiver are not coincident, but it cannot
do so when the reflections come from dipping horizons.

2. The second piece of migration corrects for dip. Historically, this second piece was
called dip-moveout (DMO), but, in the cases of interest here, it happens within the
migration methodology itself.

3. The third migration piece shifts events on each moveout-corrected offset to its true
subsurface position.

4. The fourth and final piece sums (stacks) all the redundant traces into the final
image.

When the Earth’s velocity has very little lateral variation, these four operations can be
split apart and applied in any desired order. The most familiar order is NMO, DMO,
stack, and finally migration. However, when the velocity is almost constant, it is quite
possible to use the order DMO, migration, NMO, and stack. Full prestack migration can
be thought to have the order DMO, NMO, imaging, and stack, but in reality the sequence
DMO, NMO, and imaging is usually done in one giant process.
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Initial attempts at subsurface imaging forced the geophysicist to join the Flat Earth
Society. For a constant velocity medium, Figure 3-35 shows that Greek mathematics
can be used to provide the total travel time, t, from a surface source to a flat subsurface
reflector and back to a surface receiver. This is done in terms of the two-way vertical
travel time, f,, from the midpoint, M, to the reflector and back to the surface. Since
neither the velocity, v, nor the vertical or “zero-offset” traveltime is usually available
directly, redundant source and receiver configurations must be used to estimate the
traveltimes. For most acquisition geometries, redundancy is usually sufficient to
simultaneously estimate both ¢, and v.

Figure 3-35. Constant velocity NMO.
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The subsurface image point, I, is usually referred to as the common-depth-point (CDP).
The common depth point is the halfway point in the travel of a wave from a source to

a flat-lying reflector to a receiver. When we know the velocity, the arrival at time ¢ and
offset 1 can be moved to time f,. This process is usually called normal moveout correction
(NMO). After NMO, all traces with a common-midpoint are summed to remove the
redundancy and produce a zero-offset trace.

However, for our purposes, the important thing is that this vertical time shift is the first
step in formulating a prestack approach to imaging. The shift corrects to the arrival time
consistent with coincident sources and receivers. After NMO, the result is as though the
source, S, and receiver, R, were located at the midpoint, M.
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The traces in the CDP gather of Figure 3-36 all have the same midpoint. When the
subsurface reflectors are all flat, the hyperbolic curve in red defines the appropriate
velocity to use to correct the data to zero offset time #,. A modern computer easily
fits the data and provides the graphics to estimate both the vertical traveltime and the
velocity. The vertical traveltime, f,, in this figure is extremely important. Keep this in
mind as the book continues.

Figure 3-36. Typical midpoint gather.
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The shots in Figure 3-37 are from the pyramid model in Figure 3-38.

Figure 3-37. Shots |1-24 from the Pyramid model
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Figure 3-38. The Pyramid Model

Figure 3-39 is a stack of the common-midpoint ordered data in Figure 3-37. NMO was
performed using the root-mean-square velocity from the model used to generate the
data. The “noise” in this data set is representative of a poor implementation of the
approximations to the differential equation used to model the data. This kind of noise
is related either to the fact that the differences have not been approximated well, or
because damping at the boundaries is poor.

Figure 3-39. The stack of Shots |1-24 from Figure 3-37.
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Figure 3-40 shows how dip affects arrival times as a function of half-offset.

Figure 3-40. Moveout for a dipping reflector.
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To relate the traveltime from source at m — h (S) to the image point, I, and back to the
receiver at m + h (R), note that in Figure 3-40, the length of the path from S to [ and then

to R is the same as the length from R to I’. Using the law of cosines, we have Equation 3-
8.

(AI')? + (AR)” - 2(AI')(AR) cos 28

= (m—h—-AY +m+h— A =2m—h—-A)(m+h- A)cos2p
= 2(m— A) + 21 = 2(m — A)’ cos 2B + 2h* cos 28

= 2(m— A)Y(1 - cos2p) + 2h°(1 + cos 2p)

= 4(m - A)’ sin’ B+ 4h” cos? B

(3-8) (RI')?

To get the time over the path from R to I’, divide each side of Equation 3-8 by v?, as
shown in Equation 3-9.

(RI'Y’  4(m— A)*sin’ B N 4h” cos? B

(3-9) 0? 02 0?

Since the vertical traveltime is given by Equation 3-10, we get the final equation,
Equation 3-11.

(3-10) 7 = MC _ (m—A)sinp

(3-11D) =13
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The cosine term in the denominator of Equation 3-11 essentially increases the apparent
velocity of the dipping reflector. For example, the apparent velocity of a bed dipping at
60 degrees will be exactly twice that of a flat reflector in the same velocity medium.

Figure 3-41 shows that reflections from a dipping reflector in a constant velocity medium
appear to be from a flat reflector with a velocity of é The blue hyperbola is what

actually defines the dipping event. The red curve is the hyperbola from a flat reflector
with the same velocity, v.

Figure 3-41. The impact of dip as seen on a common-midpoint gather.
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Note that for traces with a fixed midpoint, reflections from the dipping horizon do not
correspond to a fixed common-depth-point (CDP) location (the intersection of the green
line and the dipping reflector). In fact, the larger the offset between source and receiver,
the greater the CDP-reflection point separation. This separation is referred to as CDP
smear. To correct precisely for CDP smear requires that we prestack migrate the traces,
since normal moveout will not work.

Nevertheless, the hyperbolic curve (blue in the figure) can still be corrected and stacked,
it just cannot be stacked with the true velocity v, but must be stacked with the normally
much faster velocity, @ Thus, if we assume that the CDP smear is small, we could, in

principle, stack the data with the faster velocity and produce some kind of representation
of the dipping event. One way to do this, and then combine the dipping information
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with the standard stack, is to NMO with the faster velocity, filter out anything that is not
flat, stack and then add the result back to the NMO stack.

Examples

To see how this might work, we will stack the data with velocities of the form ﬁ over

a uniform range of angles 8, filter out anything that is not flat on the CDP gathersl, and
then stack.

Figure 3-42 is an example stack of a two-dimensional Gulf of Mexico data set over an
obvious salt structure. The process used to generate this unmigrated image was simply
NMO followed by stack. There was no intermediate dip correction or migration.

Figure 3-42. A typical stack of a 2D data set from the Gulf of Mexico. This data
was shot sometime in the 1980’s.
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Figure 3-43 is a stack of a Gulf of Mexico salt structure using parameters and filters that
attempt to image dip up from O to 15 degrees. What we actually did was find a set of
velocities that we thought represented the sediment velocities, and then filter out all of
the events that were over-corrected by normal moveout. Our best estimate is that the
actual dips of the reflections comprising this image are no larger than 35 degrees.

Figure 3-43. Stack of the data in Figure 3-42 using an assumed dip of 7.5 degrees.
At the bandwidth of these data the effect is to stack everything up to
approximate |5 degrees.
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Figure 3-44 is a stack of a the Gulf of Mexico salt structure with parameters chosen to
image events from beds with 15 to 30 degree dips. Note that what we are seeing are
mostly reflections from beds whose dip is increasing as they approach the salt dome.

Figure 3-44. Stack of the data using an assumed dip of 22.5 degrees. At the
bandwidth of these data the effect is to stack everything between 15

and 30 degrees of dip.
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Figure 3-45 shows the stack of data over a Gulf of Mexico salt dome with parameters
chosen to image reflections from events with 30 to 45 degree dips. As we increase the
angle of the dips we are trying to image, we see that events reflected from more steeply
dipping beds begin to appear. Again, this unmigrated image was produced by modifying
the normal stacking velocity field to produce an apparent velocity field closely associated
with dipping events in the 30 to 35 degree range.

Figure 3-45. Stack of the data using an assumed dip of 37.5 degrees. At the
bandwidth of these data the effect is to stack everything between 30
and 45 degrees of dip.
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By increasing the dip range to 45 to 60 degrees, Figure 3-46 shows that, in fact, there
are reflections in this data set from beds that dip in excess of 45 degrees. What is more
important is that these reflections cannot be seen in a typical stack which has not been
dip-moveout corrected. Thus, if they are not imaged in a traditional stack, we cannot be
expected to image them on post-stack migrated sections.

Figure 3-46. Stack of the data using an assumed dip of 52.5 degrees. At the
bandwidth of these data the effect is to stack everything between 45
and 60 degrees of dip.
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Figure 3-47 is a linear stack of the 15 to 60 degree dipping events. By stacking the
sections from the last three figures, we get an idea of the events that should be in the
original NMO-only based stack, but are not visible there. When these are migrated, a
much clearer picture of the salt structure appears.

Figure 3-47. The sum of the sections in Figures 3-43 through 3-46.
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Adding all of the sections together provides the final NMO-DMO corrected stack in
Figure 3-48. This DMO corrected data set is much closer to a true zero-offset profile,
and now includes reflections from steeply dipping events. Migration of this section will
produce a much clearer picture of the salt structure.

Figure 3-48. The sum of the sections in Figures 3-42, and 3-47.

Remarks about DMO

In summary, correcting for dip using DMO partially migrates the data to address the

fact that CDP arrival time curves have apparent velocities much faster than flat events.

It converts upward sweeping hyperbolas in each and every NMO-corrected CDP into

flat events at zero-offset traveltimes. Although it is possible to perform DMO using non-
constant velocity fields, in practice, most DMO algorithms are constant velocity methods.
They achieve their goals in much the same manner as an ordinary migration, but with
much smaller operators. As seen in the earlier figures, it is possible to image dipping
events using existing stacking and dip filter methods. What is even more surprising

is that constant velocity DMO and even prestack time migration can be accomplished
without knowing anything about the velocity.

The NMO-DMO-STACK combination is usually called partial prestack migration because
it performs three of the four tasks involved in performing a prestack migration. After its
application, the only remaining task is to position subsurface events properly. Because
NMO-DMO-STACK is relatively cheap, this process played an important early role in
improved imaging, and for a time became a standard part of every processing sequence.
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However, since most DMO processes are based on con