Seismic Modeling, Migration, and Velocity Inversion Questions

Bee Bednar

Panorama Technologies, Inc. 14811 St Marys Lane, Suite 150 Houston TX 77079

May 18, 2014

Outline

Outline

- 1. A chief cause of anisotropy in rocks is due to
 - a. Rock texture such as lamination, fractures or cracks
 - b. The volume of absorbed fluids
 - c. Sub-areal exposure
 - d. Metamorphosis
- 2.Exposed shales are easily recognize by
 - a. Lamination
 - b. Talus slopes
 - c. Their characteristic black color
 - d. The number of fossils
- 3.Shear velocities in rocks are
 - a. A function of their compressional modulus
 - b. A function of the shear modulus
 - c. Both a and b
 - d. None of the above
- 4.Orthorhombic isotropy is characterized by
 - a. Five independent volumes
 - b. Twenty-one independent volumes
 - c. Nine independent volumes
 - d. Eighteen independent volumes

- 5.Tilted Transverse Isotropy refers to
 - a. Orthorhombic isotropy with a vertical symmetry axis
 - b. Vertical Transverse Isotropy with a tilted axis of symmetry
 - c. An isotropic elastic medium with a horizontal symmetry axis
 - d. None of the above
- 6.Beam migrations are based on
 - a. Ray tracing light beams in constant velocity
 - b. Estimates of the local subsurface dip
 - c. Estimates of apparent dip
 - d. Smearing trace amplitudes over equal travel time curves
- 7.The difference between time and depth migration is
 - a. None
 - b. Time images along image rays while depth images along vertical rays
 - c. Time images along vertical rays while depth images along image rays
 - d. Time uses a full 3D velocity volume while depth does not
- 8.The migration approach that is closest to true amplitude is
 - a. Full two-way (reverse time migration)
 - b. Kirchhoff prestack time migration
 - o c. Gaussian Beam migration
 - o d. One-way phase screen with one additional bounce

- 9.Two distinct rays arriving at a fixed subsurface point
 - a. Can have identical take-off angles
 - b. Can have identical incident angles
 - o c. Can have different take-off angles but identical incidence angles
 - d. None of the above
- 10.The full wave-equation is based on
 - a. Newton's second law of motion and HookeOs law
 - b. Hooke's law
 - c. Newton's second law of motion
 - d. Newton's law of gravitational attraction
- 11.Forward modeling
 - a. Has no part in seismic migration
 - b. It's the basis for all migration algorithms
 - o c. Is used to forward propagate time-reversed trace
 - d. Both b and c
- 12.The aliasing of dipping events
 - a. Is related only to dip
 - b. Is related to dip and frequency
 - o c. Is a relationship between surface spacing, dip, and frequency

Bee Bednar (Panorama Technologies)

- 13. Mathematically, wave equation based migration algorithms
 - a. Assume that the Earth consists of flat layers
 - b. Assume that the sources and receivers are actually arrays
 - c. Assume that sources and receivers are point sources and receivers
 - d. Assumes a line source and are point receivers
- 14. Kirchhoff migration
 - a. Is not wave equation based
 - b. Is based on an approximation to the wave equation
 - c. Cannot resolve steeply dipping events
 - d. Both b and c
- 15. Phase Screen migration
 - a. Is a full two-way method
 - b. Is not based on factorization of the wave equation
 - c. Correctly handles dips steeper than 90 degrees
 - d. Cannot images turning rays
- 16. Gaussian Beam migration
 - a. Is misnamed. Its not really a beam based method
 - b. Is a beam based method that images only on the central ray
 - c. Is a beam based method that images only off the central ray

- 17. When properly implemented, Gaussian Beam migration
 - a. Is very close to a true two-way method
 - b. Is the best one-way method available
 - c. Images up to 108 degrees but no higher
 - d. Is based on factorization of the wave equation into two one-way equations
- 18. Full waveform inversion.
 - a. Computes AVO slope and intercept to estimate subsurface velocities
 - b. Had nothing to do with modeling or migration
 - c. Is based on full waveform modeling and migration
 - d. Can be applied only to marine data
- 19. Full waveform inversion.
 - a. Can only be used in 2D
 - b. Is an iterative scheme using RTM to calculate the velocity model update
 - c. Can only be used in 3D
 - d. Calculates the velocity model update through tomographic raytracing
- 20. According to mathematical theory
 - a. Migration is independent of acquisition geometry and design
 - b. Migration requires acquisition at the largest possible spacings
 - o c. Wide azimuth densely spaced acquisition is optimum

- 21. Acquisition design
 - a. Has no affect on frequency content
 - b. Is independent of sample increments
 - o c. Is optimum when the spacing is as large as possible
 - d. Is optimum when the spacing is as small as possible
- \circ 22. V_{nmo} velocity is defined to be
 - a. The best estimate of vertical or well velocity
 - b. When divided by two is a good estimate of horizontal shear velocity
 - c. The best estimate of horizontal velocity
 - d. The velocity that produces the best isotropic migration image
- \circ 23. The anisotropic parameter δ
 - a. Can be thought of as governing horizontal wave speed
 - b. Can be thought of as governing percentage depth miss ties
 - oc. Is the ratio of the horizontal velocity to the vertical velocity minus 1
 - d. Is a function of the two shear velocities in anisotropic propagation
- \circ 24. The anisotropic parameter ϵ
 - a. Can be thought of as governing horizontal wave speed
 - b. Can be thought of as governing percentage depth miss ties
 - c. Is given by the formula $.5(\frac{V_{nmo}}{V_{vest}} 1)$

- 25. Anisotropic waves
 - a. Consists of a compressional and two shear waves
 - b. Propagate with velocities that are angle dependent
 - c. Constantly convert from on type to the other
 - d. All of the above
- 26. Based on theory and case studies
 - a. Single linear array of receivers produces the best results
 - b. Wide azimuth acquisition is better than all other methods
 - c. Optimal acquisition is independent of receiver placement
 - d. None of the above
- 27. Theoretical analysis, case studies, and synthetic tests
 - a. Show that full waveform inversion does not work.
 - b. Show that inversion depends mostly on high frequencies
 - c. Show that full wave form always performs perfectly
 - d. Show that inversions strong depends on low frequencies
- 28. Migration algorithms
 - a. Cannot provide information about velocity errors
 - b. Provide algorithm dependent indicators of velocity errors
 - c. Are insensitive to velocity errors
 - d. Work best when applied in the time domain

- 29. All depth migration algorithms can be thought of as
 - a Forward and backward propagation coupled by an imaging condition
 - b. A lateral shift followed by a vertical shift
 - · c. Finding the termination of an apparent dip based ray
 - d. All of the above
- 30. Raytracing is an integral part of
 - a. Gaussian Beam Migration
 - b. Classical Beam Migration
 - c. Kirchhoff Migration
 - d. All of the above
- 31. Raytracing is not an integral part of
 - a. Reverse Time Migration
 - b. Gaussian Beam Migration
 - c. Kirchhoff Migration
 - d. All of the above
- 32. Kirchhoff Migration
 - a. Is not based on the wave equation
 - b. Is a full waveform method
 - c. Is based on the wave equation
 - d. All of the above.

