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Finite Differences Finite Difference Approximations

Finite Difference Approximations

Once we have the basic equations we can produce digital propagating
equations by simply replacing the various derivatives by central difference
formulas. Accuracy is dependent only on the accuracy of the differential
approximations. The tremendous literature on such approximations generally
falls into two categories:

Polynomial approximations
Fits a polynomial to discrete data values
Uses the derivative of the polynomial to produce a difference formula

Taylor approximations
Uses a Taylor series expansion of functions to produce difference formulas
A natural extensions of the differential equations

Of these two the Taylor series method is by far the most popular
It will be the focus of the rest of this section
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Finite Differences Taylor Series Differences

Taylor Series Differences

The Taylor series for u(x ±∆x) in terms of u(x) is

u(x ±∆x) = u(x)± ∂u
∂x

∆x +
∂2u
∂x2

∆x2

2!
± ∂3u
∂x3

∆x3

3!
+ · · ·

If we rearrange this series in the form

u(x ±∆x)− u(x)

∆x
= ±∂u

∂x
+
∂2u
∂x2

∆x
2!
± ∂3u
∂x3

∆x2

3!
+ · · ·

we immediately recognize that the forward and backward differences are
accurate to ∆x . Mathematically we say that the forward and backward
difference are are on the order of ∆x , or just O(∆x).
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Finite Differences Central Differences

Central Differences

Taylor series form the basis for other more accurate formulas. The most
obvious one arises from the sum of the Taylor series expansions for
u(x + ∆x)− u(x) and u(x)− u(x −∆x). This immediately yields the central
difference formula

u(x + ∆x)− u(x −∆x)

2∆x
=
∂u
∂x

+
∂3u
∂x3

∆x2

3!
+
∂5u
∂x5

∆x4

5!
+ · · ·

which is O(∆x2). Since we generally think of ∆x as being small in magnitude
this central difference formula is clearly an improvement over a first-order
forward or backward difference.
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Finite Differences Central Differences

Central Differences

Extension of the second order central difference to higher orders is tedious,
but straight forward. For any given k (real or integer) one has

u(x + k∆x) + u(x − k∆x)

2
= u(x) + k2 ∂u2

∂x2
∆x2

2!
+ k4 ∂

4u
∂x4

∆x4

4!

+ k6 ∂
6u
∂x6

∆x6

6!
+ k8 ∂

8u
∂x8

∆x8

8!
· · ·
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Finite Differences Central Differences

Central Differences

If we want a fourth order scheme, what we do is take the two terms

u(x + ∆x) + u(x −∆x) = 2(u(x) + ∂2u
∂x2

∆x2

2! + ∂4u
∂x4

∆x4

4! )

u(x + 2∆x) + u(x − 2∆x) = 2(u(x) + 4∂
2u
∂x2

∆x2

2! + 16∂
4u
∂x4

∆x4

4! )

solve the second for the fourth order partial derivative and substitute into the
first to obtain

∂2u
∂x2 ≈

u(x + 2∆x) + 16u(x + ∆x)− 34u(x) + 16u(x −∆x) + u(x − 2∆x)

12∆x2
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Finite Differences Central Differences

Central Differences

Higher order central difference approximations are obtained by simply adding
additional terms to the mix. For example, a 10th order accurate term is
obtained by back-substitution in the five equations when k = 1,2,3,4,5. The
result is a scheme of the form

∂2u
∂x2 ≈

k=5∑
k=−5

wk u(x − k∆x)

where

—k— w
0 -5.8544444444
1 3.3333333333
2 -0.4761904762
3 0.0793650794
4 -0.0099206349
5 0.0006349206

Bee Bednar (Panorama Technologies) Seismic Modeling, Migration and Velocity Inversion May 30, 2014 9 / 38



Two-Way Equations
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

An Explicit 2D Finite Difference Propagator

Applying the difference approximations to the second-order-scalar wave
equation with solution ui,j,n+1 = u(i∆x , j∆z,n∆t + ∆t) yields the 2D discrete
central difference formula forward extrapolation

ui,j,n+1 = 2ui,j,n − ui,j,n−1

+ v2

(∑
k

bk ui−k,j,n +
∑

m

cmui,j−m,n

)
+ si0,j0,n

for the 2D scalar wave equation, where for clarity the factors ∆t2, ∆x2 and
∆y2 have been suppressed. Here, si0,j0,n represents a source at the location
specified by i0 and j0.
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

Issues

The extrapolator in the previous section is of second order in time and Nth
order in space.
Some key points are:

The extrapolator requires exactly 3 volumes in memory at all times
Extension to higher orders in time

Increases the accuracy, but also increases the number of volumes that must
be held in memory

A natural question is whether or not the time order can be increased
Without increasing the number of volumes that must be held in memory

The answer is the Lax-Wendroff or Dablain Trick
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Two-Way Equations Lax-Wendroff or the Dablain Trick

Lax-Wendroff or The Dablain Trick

Probably the best known ”trick” for improving derivatives in the time direction
was initially published by Lax and Wendroff some 40 years ago. (see also
Dablain (1986)) What they did was use the wave equation to find a fourth
order accurate difference for ∂2

∂t2 that does not increase the overall memory
requirements. To understand this trick, consider the case in 2-dimensions
when the velocity is constant and ρ = 1. If we solve the Taylor series for the
simplest 2nd order time differential we get

∂2u
∂t2 =

1
∆t2

(
u(t + ∆t)− 2u(t) + u(t −∆t)−

i=∞∑
i=2

∂2iu
∂t2i

∆t2i

2i!

)

≈ 1
∆t2

(
u(t + ∆t)− 2u(t) + u(t −∆t)− ∂4u

∂t4
∆t4

12!

)
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Two-Way Equations Lax-Wendroff or the Dablain Trick

We also know that
∂2u
∂t2 = v2

(
∂2u
∂x2 +

∂2u
∂z2

)
so

∂4u
∂t4 = v2

[
∂2u
∂x2

(
∂2u
∂t2

)
+
∂2u
∂z2

(
∂2u
∂t2

)]
= v2

[
∂2u
∂x2

(
∂2u
∂x2 +

∂2u
∂z2

)
+
∂2u
∂z2

(
∂2u
∂x2 +

∂2u
∂z2

)]
= v4

(
∂4u
∂x4 + 2

∂4u
∂x2∂z2 +

∂4u
∂x4 .

)
which tells us that we can replace the fourth order time differential with spatial
derivatives. This means that we can increase the accuracy without increasing
memory requirements.
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Two-Way Equations Lax-Wendroff or the Dablain Trick

Lax-Wendroff

It should be noted that the assumptions of constant density and velocity are
not necessary. What the Lax-Wendroff scheme does is generalizes our
scheme for finding higher order central difference terms through the recursive
formula

∂2iu
∂t2i = −

(
ρv2∇ · 1

ρ
∇u
)
∂2i−2u
∂t2i−2 .
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

The Lax-Wendroff 2D Finite Difference Propagator

Applying the difference approximations to ui,j,n+1 = u(i∆x , j∆z,n∆t + ∆t)
produces the 2D discrete central difference formula forward extrapolator

ui,j,n+1 = 2ui,j,n − ui,j,n−1

+ v2

(∑
k

bk ui−k,j,n +
∑

m

cmui,j−m,n

)
+ v4

∑
k

∑
m

ak,mui−k,j−m,n + si0,j0,n

for the 2D scalar wave equation, where for clarity the factors ∆t2, ∆x2 and
∆y2 have been suppressed. Here, si0,j0,n represents a source at the location
specified by i0 and j0.
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

Finite Difference Approximation Summary

Taylor series
Represent the typical approach to differential approximation
Accuracy can be of almost any order
Experience has shown that 8× 4 is the break even point

Lax-Wendroff or Dablain
Approximates time derivatives with spatial derivatives
Reduces need for increased memory

Accuracy
Dependent only on accuracy of differential approximates
Tends to stabilize around 8th order
Always have some inaccuracies
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

Staggered Grids

The first-order fully elastic equation is usually discretized over what has
become known as a staggered grid. Assuming a grid spacing of ∆x , the
actual calculations take place on two grids that are staggered with respect to
one another. Some of the parameters exist on one while other exist on the
other. A couple of the parameters actually live on both. What is proposed,
then, is two grids. with one centered on x and the other on x + .5∆x . Think of
this as two separate screens offset by half the screen spacing.
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

Staggered Grids

Constructing a staggered grid requires the approximation of derivatives at
half-spacings. Certainly this is well within our scope. Approximate derivatives
using ∆x

2 :

u(x+ ∆x
2 )−u(x−∆x

2 )

∆x = u(x) + ∂u2

∂x2
∆x2

4×2! + ∂4u
∂x4

∆x4

16×4!
u(x+∆x)−u(x−∆x)

∆x = u(x) + ∂u2

∂x2
∆x2

2! + ∂4u
∂x4

∆x4

4!

The difference formula then becomes

∂2u
∂x2 ≈

i=N∑
i=−N

wiu(x − i
2

∆x)
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

Staggered Grid Parameters

Distribution of variables and parameters (ρ, cij ) in a 2D staggered grid mesh.
Particle velocity v2 lies on the regular grid, parameters cij , and σij lie on the
half grid, v2 on the full grid and ρ lies on both. Memory conservation is a
benefit of this approach
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

2D Staggered Grid Finite Difference Propagator

v1
i,j,k+1/2 = v1

i,j,k−1/2 + ρ
−1
i,j

∆t
∆x

“
σ

1,1
i+1/2,j,k − σ

1,1
i−1/2,j,k

”
+ ρ

−1
i,j

∆t
∆z

“
σ

3,3
i,j+1/2,k − σ

3,3
i,j−1/2,k

”
,

v3
i+1/2,j+1/2,k+1/2 = v3

i+1/2,j+1/2,k−1/2 + ρ
−1
i+1/2,j+1/2

∆t
∆x

“
σ

3,3
i+1,j+1/2,k − σ

3,3
i,j+1/2,k

”
+ ρ

−1
i+1/2,j+1/2

∆t
∆z

“
σ

1,3
i+1/2,j+1,k − σ

1,3
i+1/2,j,k

”
,

σ
1,1
i+1/2,jk+1 = σ

1,1
i+1/2,j,k + (λ + 2µ)i+1/2,j

∆t
∆x

“
v1

i+1,j,k+1/2 − v1
i,j,k+1/2

”
+ λi+1/2,j

∆t
∆z

“
v3

i,j+1,k+1/2 − v3
i,j,k+1/2

”
,

σ
1,3
i,j+1/2,k+1 = σ

1,3
i,j+1/2,k + µi,j+1/2

∆t
∆z

“
v1

i,j+1,k+1/2 − v1
i,j,k+1/2

”
+ µi,j+1/2

∆t
∆x

“
v3

i+1,j,k+1/2 − v3
i,j,k+1/2

”
.

σ
3,3
i+1/2,j,k+1 = σ

3,3
i+1/2,j,k + (λ + 2µ)i+1/2,j

∆t
∆x

“
v3

i+1,j,k+1/2 − v3
i,j,k+1/2

”
+ λi+1/2,j

∆t
∆z

“
v1

i,j+1,k+1/2 − v1
i,j,k+1/2

”
,
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Two-Way Equations Application to the 2D Two-Way Scalar Wave Equation

A 2D Staggered Grid Propagator at Work

Staggered grid finite difference stencils. Purple shading represents the
regular gird so that nodes in the middle lie on the regular grid while those on
the edges lie on the half grid.
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Two-Way Equations Summary

Summary

Two fundamental discrete equations
One for scalar equations

Central differences on regular grid
One for elastic equations

Staggered grids
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One-Way Wave Equations Application to the One-Way XT Scalar Wave Equation

One-Way Scalar Wave Equation in XT

The one-way scalar wave equation in space time is

∂u
∂z

= ±

√
(

1
V 2

∂2

∂t2 −
∂2u
∂x2 −

∂2u
∂y2 )u

If we set

T 2 = ∂2u
∂t2 , Z = ∂u

∂z . X 2 = ∂2u
∂x2 and Y 2 = ∂2u

∂y2

then the scalar wave equation takes the form

Z = ±
√

T 2

V 2 − X 2 − Y 2
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One-Way Wave Equations Application to the One-Way XT Scalar Wave Equation

Getting Rid of the Square Root

Approximate the square root:

Z = ±
√

T 2

V 2 − X 2 − Y 2 ≈ ±

(
T
V
−

4 T 2

V 2 − 3(X 2 + Y 2)

4 T 2

V 2 − (X 2 + Y 2)

)

Clear fractions:

(4
T 2

V 2 − (X 2 + Y 2))Z = ±
(

4(
T
V
− 1)

T 2

V 2 − (
T
V
− 3)(X 2 + Y 2)

)
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One-Way Wave Equations Application to the One-Way XT Scalar Wave Equation

One-Way Propagation in XT

Substitute

T = ∂U
∂t , T 2 = ∂2u

∂t2 , Z = ∂u
∂z . X 2 = ∂2u

∂x2 and Y 2 = ∂2u
∂y2

back into

(4
T 2

V 2 − (X 2 + Y 2))Z = ±
(

4(
T
V
− 1)

T 2

V 2 − (
T
V
− 3)(X 2 + Y 2)

)
to get„

4
1

V 2

∂2u
∂t2

− (
∂2u
∂x2

+
∂2u
∂Y 2

)

«
∂u
∂z

= ±
„

4(
1
V

∂u
∂t

− 1)
1

V 2

∂2u
∂t2

− (
1
V

∂u
∂t

− 3)(
∂2u
∂x2

+
∂2u
∂x2

)

«
and replace all the partial derivatives with difference quotients
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One-Way Wave Equations Application to the One-Way XT Scalar Wave Equation

One-Way XT Finite Differences

Then organize into matrix form

Au(x , y , z + ∆z, t) = Bu(x , y , z, t)

where A and B are matrices of coefficients derived from finite differences and
the underlying Earth model.

Inverting A
u(x , y , z + ∆z, t) = A−1Bu(x , y , z, t)

to produce an implicit propagator that steps down one ∆z at a time. Inverting
A in 3D is not easy and consequently its a source for additional errors in the
propagation.
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One-Way Wave Equations Application to the One-Way FX Scalar Wave Equation

One-Way Scalar Wave Equation in FX

The one-way scalar wave equation in frequency-space is

∂u
∂z

= ±

√
(
ω2

V 2 +
∂2

∂x2 +
∂2

∂y2 )u

If we set

T 2 = ω2, Z = ∂u
∂z . X 2 = ∂2u

∂x2 and Y 2 = ∂2u
∂y2

then the scalar FX wave equation takes the form

Z = ±
√

T 2

V 2 + X 2 + Y 2

which is essentially identical to the XT one-way-scalar wave equation
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One-Way Wave Equations Application to the One-Way FX Scalar Wave Equation

FX Finite Difference

Applying the same square root approximation to

Z = ±i

r
ω2

V 2 + X 2 + Y 2

in the frequency domain results in a matrix formulation

u(x , y , z + ∆z, ω) = A−1(ω)B(ω)u(x , y , z, ω)

that is very similar to the space-time domain result. It just happens to be done
frequency-by-frequency.
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One-Way Wave Equations Summary

XT and FX Finite Difference Summary

Both implicit methods
They require matrix inversions at each downward or upward step

In 3D the matrices may be huge
This approximation of the square root is considered to produce the most
accurate of all one-way methods

But the matrix inversion in 3D makes implementation difficult
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Stability

Stability

The factors of the from
v2∆t
∆x

,
v2∆t
∆y

,and
v2∆t
∆z

are extremely important.
To assure that the computations are stable we must have

∆t ≤ 2
π

(
∆xmin

vmax

)
where ∆xmin is the smallest of ∆x , ∆y , and ∆z.
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Boundaries

Boundaries

Realistic seismic simulations generally include procedures for suppressing
boundary reflections. Modern approaches begin by surrounding the model
with a small number of fake layers. Modified equations for absorbing energy
are then applied layer by layer to produce a desired level of suppression. The
number of layers is certainly a function of method but typically ranges from a
handful to perhaps ten to fifteen.
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Boundaries

Finite Difference Boundaries

Sponge
γ decays exponentially

Perfectly matched layers
Dispersion applied in each layer

Paraxial
Suppresses waves at angle αj

∂2

∂t2

„
p
q

«
=

„
−γ 1

−ρv2∇ · 1
ρ
∇ −γ

«„
p
q

«
∂

∂x
−→ 1

1 + iσ(x)
ω

∂

∂x8<:
j=JY
j=1

»
(cosαj )

∂

∂t
− v

∂

∂x

–9=; p = 0
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Boundaries

Free Surface in an Elastic Medium

A free surface implies that no normal or shear stress are active there, so we
can set σ3,3

i,j,k = 0 and σ1,3
i,j,k = 0. The shear stress boundary condition is

handled by setting it to zero at z = 0 as well. The vertical stress is not defined
at the top boundary but is forced to zero by making the vertical stress
antisymmetric for the first two rows above the free surface, i.e., σ3,3

−1,i = −σ3,3
0,i,n

and σ3,3
−2,i,n = −σ3,3

1,i,n
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Boundaries

Questions?
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