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Full Two-Way Wave Equations
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Full Two-Way Wave Equations Newton and Hooke

3D Stress Equation

Newton in 3D

∂2ui

∂t2 =
1
ρ

3∑
j=1

∂σij

∂xj
.

In 3D,the forces that can affect a point are in-line compressional and
orthogonal shear. Looking at a small cube each of the nine faces of the cube
can move both inward and outward as compressional as well as shear along
vertical and horizontal planes.
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Full Two-Way Wave Equations Newton and Hooke

3D Stress Equation

Newton in 3D

∂2ui

∂t2 =
1
ρ

3∑
j=1

∂σij

∂xj
.

The stresses σij can generated up to three wavefields, ui. The existence of a
wavefield and its strength is completely determined by the properties of the
rocks governing propagation. Newton’s law relates acceleration to the nine
possible forces per unit area (stresses) through the equation above.
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Full Two-Way Wave Equations Newton and Hooke

3D Hooke

For a linear 3D medium, Hooke’s law can be rephrased as
A CHANGE in FORCE per unit volume is equal to the bulk modulus
times the increase in volume divided by the original volume.

The 3D stress equation has nine stress factors, σij , one for each of the three
dimensions and three coupled wavefields, ui . Hooke’s law says that

each component of stress σij is linearly proportional to every
component of strain Emn

so that

σij =
∑
m,n

cijmnEmn =
∑
m,n

cijmn
1
2

(
∂um

∂xn
+
∂un

∂xm

)
In this case the cijmn are elements of what is called the stress tensor.
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Full Two-Way Wave Equations The Coupled Elastic System

Coupled Full Elastic Equations

The two equations
∂2ui

∂t2 =
1
ρ

3∑
j=1

∂σij

∂xj

σij =
∑
m,n

cijmn
1
2

(
∂um

∂xn
+
∂un

∂xm

)
form a coupled system for full elastic wave propagation. Note that superficially
there are 81 elements in the stress tensor defined by the cijmn.
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Full Two-Way Wave Equations The Coupled Elastic System

Coupled Full Elastic Equations

If we define
vi =

∂ui

∂t
then

∂vi

∂t
=

1
ρ

3∑
j=1

∂σij

∂xj

and
∂σij

∂t
=
∑
m,n

cijmn
1
2

(
∂vm

∂xn
+
∂vn

∂xm

)
form a first-order-in-time-coupled system for full elastic wave propagation.
Note that superficially there are 81 elements in the stress tensor defined by
the cijmn.
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Full Two-Way Wave Equations The Stress Tensor and the C Matrix

The C = [cij ] Matrix vs the cijmn Tensor

Notice that cijmn = cmnij , cijmn = cijnm, cijmn = cjimn and cijmn = cmnij , so that after
applying the indexing scheme (Voigt scheme)

index ij = 11 22 33 23 13 12
map ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
index k , l = 1 2 3 4 5 6

one gets 
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c34 c45 c55 c56
c16 c26 c36 c46 c56 c66

,

which is the C = [cij ] matrix shown earlier. The symmetry reduces the number
of cij to 21 volumes.
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Full Two-Way Wave Equations 2D Isotropic Elastic Wave Equation Example

2D Isotropic Elastic Wave Equation

As an example, the 2D Isotropic Elastic Wave Equation is

∂v1
∂t = 1

ρ

(
∂σ1,1
∂x1

+
∂σ1,3
∂x3

)
∂v3
∂t = 1

ρ

(
∂σ1,3
∂x1

+
∂σ3,3
∂x3

)
∂σ1,1
∂t = λ+2µ

ρ
∂v1
∂x1

+ λ
ρ
∂v3
∂x3

∂σ1,3
∂t = µ

ρ

(
∂v3
∂x1

+ ∂v1
∂x3

)
∂σ3,3
∂t = λ+2µ

ρ
∂v3
∂x3

+ λ
ρ
∂v1
∂x1

where, in the usual geophysical notation, x1 = x , and x3 = z. Thus, v1
represents particle velocity in the horizontal and v3 is particle velocity in the
vertical direction. In this case the C matrix is defined by λ+ 2µ and µ. Note
that these are actually 2D numeric fields. That is, they are 2D functions of x
and z.
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Full Two-Way Wave Equations First Order Elastic Systems

First Order System

Although the algebra is quite tedious, for any given C matrix, the coupled
system in the previous slide can be written as the first order vector system

∂v
∂t

= X1
∂v
∂x1

+ X2
∂v
∂x2

+ X3
∂v
∂x3

v =

26666666666664

v1

v2

v3

σ1,1

σ1,2

σ1,3

σ2,2

σ2,3

σ3,3

37777777777775
where the elements of the X1, X2, and X3 matrices are determined by the cij
volumes in the C matrix.
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Full Two-Way Wave Equations First Order Elastic System Solution

First Order System Solution

This latter equation is appealing because it’s a one-dimensional-time-domain
differential system whose solution is easily expressed as

v(t) = exp [tH] v(0) +

t∫
0

exp [ξH] S(t − ξ)dξ

where v(0) represents the initial conditions, S(t) is the source term and H is
the operator

H = X1
∂

∂x1
+ X2

∂

∂x2
+ X3

∂

∂x3
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Full Two-Way Wave Equations Second Order Equations

Second Order Full Elastic Equation

Substitution of

σij =
∑
m,n

cijmn
1
2

(
∂um

∂xn
+
∂un

∂xm

)
into

∂2ui

∂t2 =
1
ρ

3∑
j=1

∂σij

∂xj

yields the second order version of the full elastic system

∂2ui

∂t2 =
∑
m,n,j

cijmn

ρ

∂2um

∂xn∂xj
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Full Two-Way Wave Equations Second Order Equations

Second Order Isotropic Elastic Equation

When the C matrix represents a isotropic elastic system, the two shear or
transverse waves are identical, so, after considerable algebraic manipulation,
one can write

∂2u
∂t2 = (

λ+ 2µ
ρ

)∇(∇ · u)− µ

ρ
∇×∇× u

where the first component of u = (u1,u3) is the compressional wave and the
third component is the transverse or shear wave. From a physical viewpoint,
the dot product annihilates the compressional component, while the cross
product annihilates the shear component.
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Full Two-Way Wave Equations Second Order Equations

Second Order Scalar Wave Equation

In a purely acoustic media, the shear parameters are zero, so there is no
propagation of shear waves. The 3D elastic equation reduces to the scalar
form

∂2u
∂t2 =

λ

ρ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
Setting v =

√
λ
ρ produces the traditional scalar wave equation.
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Full Two-Way Wave Equations Summary

Two-Way Wave Equation Summary

In the interest of clarity, the previous derivations were performed under some
overly simplistic assumptions. Most notably was the assumption that the
density, ρ, was constant as a function of position. Had this not been the case,
the full scalar wave equation would have taken the form

∂2p
∂t2 = ρv2

[
∂

∂x
1
ρ

∂p
∂x

+
∂

∂y
1
ρ

∂p
∂y

+
∂

∂z
1
ρ

∂p
∂z

]
.

and the fully elastic wave equation would have been a bit more complex.
Fortunately, this assumption will not significantly impair out ability to
understand the computational aspects of digital wave propagation, so the
discussion is continued with the equations as previously derived. The
anisotropic models of interest are VTI, TTI, ORT , and TORT , all of which are
incorporated within the fully elastic wave equation.

Bee Bednar (Panorama Technologies) Seismic Modeling, Migration and Velocity Inversion May 30, 2014 16 / 29



Full Two-Way Wave Equations Summary

Two-Way Wave Equation Summary

There are two fundamental wave equation styles:

Scalar
∂2p
∂t2 = ρv2

[
∂

∂x
1
ρ

∂p
∂x

+
∂

∂y
1
ρ

∂p
∂y

+
∂

∂z
1
ρ

∂p
∂z

]
and vector

∂σij

∂t
=

∑
m,n

cijmn
1
2

(
∂vm

∂xn
+
∂vn

∂xm

)
∂vi

∂t
=

1
ρ

3∑
j=1

∂σij

∂xj
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Full Two-Way Wave Equations Summary

Two-Way Wave Equation Summary

Its worth noting that every seismic wave equation of interest can be derived
from the coupled system

∂σij

∂t
=

∑
m,n

cijmn
1
2

(
∂vm

∂xn
+
∂vn

∂xm

)
∂vi

∂t
=

1
ρ

3∑
j=1

∂σij

∂xj

so technically this is the only system of concern.
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Wavefield Characteristics Frequencies and Wavenumbers

Wavefield Characterization

A monochromatic wavefield in space with frequency f and amplitude A(x , y , z, f ) is
completely characterized by its

Frequency f with units of cycles/second

Angular Frequency ω = 2πf with units of radians/second
v
f = Wavelength with units of meters/cycle

or its Wavenumbers

Temporal Wave Number k = ω
v with units of radians/meter

x Wavenumber kx with units of radians/meter
y Wavenumber ky with units of radians/meter
z Wavenumber kz with units of radians/meter
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Wavefield Characteristics Frequencies and Wavenumbers

Wavefields in the Earth

A monochromatic wavefield in space at two different velocities. The
wavelength and the amplitude change in tandem with velocity changes. When
the sinusoid is stretched amplitude reduction maintains the energy level. The
vertical wavenumber kz must change with depth. Wavefield variation with x
and/or y also implies that these wavenumbers must also vary.
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Wavefield Characteristics Frequencies and Wavenumbers

Fourier Transforms and Wave Equations

Consider the following forms of the constant velocity scalar wave equation

∂2u
∂t2 = v2

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
(1)

ω2U = v2
(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)
(2)

∂2U
∂t2 = −v2 (k2

x + k2
y + k2

z
)

U (3)

ω2U = −v2 (k2
x + k2

y + k2
z
)

U (4)

Equation (1) is called the space-time or XT equation, (2) is call the the
frequency-space or FX equation, (3) is the time-wavenumber or TK equation
while (4) is normally called the frequency-wavenumber or (FK) equation.
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One-Way Wave Equations
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One-Way Wave Equations XT, FX, TK, and FK

One-Way Propagation

The PDE
∂2u
∂t2 = v2

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
can be written

In XT as ∂2u
∂z2 = 1

V 2
∂2u
∂t2 − (∂

2u
∂x2 + ∂2u

∂y2 )

In FX as ∂2U
∂z2 = ω2

V 2 U − (∂
2U
∂x2 + ∂2U

∂y2 )

In TK as K 2
z U = 1

V 2
∂2U
∂t2 + (K 2

x + K 2
y )U

In FK as K 2
z U = ω2

V 2 U + (K 2
x + K 2

y )U
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One-Way Wave Equations XT, FX, TK, and FK
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One-Way Wave Equations Various Domains

One-Way Equations in Various Domains

Noticing that the left hand sides appear to be squared terms we can take
square roots of both sides and inverse transform over kz to obtain

∂u
∂z

= ±

√
(

1
V 2

∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2 )u

∂U
∂z

= ±

√
(
ω2

V 2 −
∂2

∂x2 −
∂2

∂y2 )U

∂U
∂z

= ±i

√
(

1
V 2

∂2

∂t2 + K 2
x + K 2

y )U

∂U
∂z

= ±i

√
(
ω2

V 2 + K 2
x + K 2

y )U (5)
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One-Way Wave Equations Various Domains

One-Way Propagation

In a medium with constant velocity v ,

w(x, t) = u(x− vt) + d(x + vt)

where x = (x , y , z) is a simple solution to the constant velocity scalar wave
equation.

u represents an upward traveling wave
d represents a downward traveling wave.

Taking the either the plus or minus sign in one of the equations of the previous
slide easily gives us an equation governing either upward (+) or downward (-)
propagation. Deriving the equations was relatively easy. Taking the square
root is going to represent a serious problem. However we do it we will be
doing serious damage to high dip and correct amplitude propagation.
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One-Way Wave Equations Summary

One-Way Equation Summary

Used for both isotropic and anisotropic propagation
For full elastic one-way propagation

Based on an equation with vs = 0
Very non-physical
Standing wave noise
Lower quality amplitudes and dips
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One-Way Wave Equations Summary

One-Way Propagation

Why?
Increases efficiency
Step down one ∆z at a time

Why not?
Dips limited to 90 degrees
No multiples
No Refractions
Amplitude distortion
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One-Way Wave Equations Summary

Questions?
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