Seismic Modeling, Migration and Velocity Inversion Full Waveform Inversion

Bee Bednar

Panorama Technologies, Inc. 14811 St Marys Lane, Suite 150 Houston TX 77079

May 18, 2014

Outline

Full Waveform Inversion

The Basic Idea

Marmousi Example

- Estimating the Initial Model
- > FWI
 - Marmousi
 - SEG AA'

Outline

Full Waveform Inversion

The Basic Idea

Marmousi Example

- Estimating the Initial Model
- FWI
 - Marmousi
 - SEG AA'

Full Waveform Inversion (FWI)

Velocity inversion is based on a very simple idea.

- Find that Earth model *M* that best explains the recorded data *D*
 - Synthetic data U generated over M should match D as closely as possible
- Minimize an objective function || D U || where || || is the
 - L^1 norm
 - least squares norm
 - least squares norm of the phase difference between D and U
 - least squares norm of the envelope difference between D and U
 - least squares norm of the logarithmic difference between D and U

The Inversion Scheme

In the classical least squares case FWI is an iterative scheme

$$M^n = \mathbf{M}^{n-1} - \mathbf{R}^{n-1} \left(D - U \right)$$

where

- At each iteration \mathbf{R}^{n-1}
 - Is a very fancy imaging condition
 - Produces an incremental ΔM
 - Is almost always some form of reverse time migration
 - But it need not be

Full Waveform Inversion

For a given model

- For each observed shot, synthesize data to match the real acquisition
 - Use a full two-way modeling algorithm
 - Save a trace at each model node
- Compute the difference between the shot and the real data
 - These data are called the residuals
- Back propagated the residuals into the model
 - Use a full two-way modeling algorithm
 - Save a trace at each model node
- Preform a shot-profile migration of the residuals
 - The shot is the forward-propagated synthetic
 - The receiver traces are the back-propagated residuals
 - Divide the back by the forward propagated traces
- Normalize the image above by the velocity squared
- Add the normalized image to the current model
- Repeat the previous steps until the norm of the model difference is small
- FWI is really a iterative migration scheme

Outline

The Basic Idea

2) Marmousi Example

- Estimating the Initial Model
- > FWI
 - Marmousi
 - SEG AA'

(a) Gather Picks

(b) Semblance Picks

(c) NMO'd Gather

Typical Marmousi gather with picks, a semblance panel with picks, and the NMO corrected gather.

Bee Bednar (Panorama Technologies)

(a) Marmousi Time-RMS model

(b) Marmousi Depth-Interval model

Initial stacking velocity models in time-RMS (left) and interval-depth (right).

Bee Bednar (Panorama Technologies)

First iteration Marmousi stacking velocity based Kirchhoff migration.

Ponerama Technologies

Bee Bednar (Panorama Technologies) Seismic Modeling, Migration and Velocity Inversion

May 18, 2014 10 / 30

(a) Marmousi Time-RMS model

(b) Marmousi Depth-Interval model

Second Kirchhoff based MVA models in time-RMS (left) and interval-deptherese (right).

Bee Bednar (Panorama Technologies)

Seismic Modeling, Migration and Velocity Inversion

Second iteration Marmousi Kirchhoff based MVA Kirchhoff migration.

(a) Marmousi Time-RMS model

(b) Marmousi Depth-Interval model

Second Kirchhoff based MVA models in time-RMS (left) and interval-deptherese (right).

Bee Bednar (Panorama Technologies)

Seismic Modeling, Migration and Velocity Inversion

Third iteration Kirchhoff based MVA Kirchhoff migration.

Bee Bednar (Panorama Technologies) Seismic Modeling, Migration and Velocity Inversion

May 18, 2014 14 / 30

▼ gathers - Marvel Version 2.1.1.30, Panorama Tech <2- = □														36 0					
Elle View Picking Eurotions Surfaces Utilities Help																			
	9		8 20	523 ·	1.59e+0	3										3.91e+	03Panel	s: 1	0
	•																	110	
										ep=0									-
	0	- 280	350	420	490	sęo	e30	200	770	840	910	aģģ	1050	11,20	11,90	1260	13,30	1400	
	200	-																	
	400	-																	
	600	-																	
	800																		
	1000) –																	
	1.200																		
	1204	-																	
	1400	- c																	2
	1600	3 - C																	
	1.800	o –																	
	2000	-																	
	2200	o																	
	2400																		
	260																		
	280	9 - C																	
	3000	,																	*
	•																		
	p=0	cdp=99	91 t=-108	ep=0 cdp=991 t=-108 amp=0															1

Fourth iteration Kirchhoff MVA based velocity model.

Fourth iteration Kirchhoff MVA based Kirchhoff migration.

Bottom horizon for constant velocity analysis.

Fourth iteration Kirchhoff MVA based model with bottom horizon 4000 meter/second velocity flood.

Bee Bednar (Panorama Technologies) Seismic Modeling, Migration and Velocity Inversion

May 18, 2014 18 / 30

Fourth iteration Kirchhoff MVA based model with bottom horizon 4000 meter/second velocity flood migration.

Bee Bednar (Panorama Technologies)

Seismic Modeling, Migration and Velocity Inversion

May 18, 2014 19 / 30

Fourth iteration Kirchhoff MVA based model with bottom horizon 5000 meter/second velocity flood migration.

Bee Bednar (Panorama Technologies)

Seismic Modeling, Migration and Velocity Inversion

May 18, 2014 20 / 30

The true Marmousi model.

Ponorama Technologies

- Insufficient offset
 - Max of 2600 over 9000 km model
 - Approximately 1300 km velocity analysis basement
- Recording time too short (3 seconds)
- Long delay wavelet

Marmousi FWI

Panerama Technologies

Marmousi Inversion

True Marmousi model.

Ponorama Technologies

Process Review

The true model

- Nine km by three km (depth)
- The observed data
 - Nine km offset
 - Broadband wavelet from .3 HZ to 50 HZ
 - Low frequency and long offsets are the key
 - Five second recording time
 - Model grid was 16m X 16m

The observed data

Marmousi Synthetic Data

Ponerama Technologies

The inversion process

We started with a MVA model

- Virtually no reflections
- Reasonably accurate shallow
- First iteration essentially muted the first breaks
- First iteration is exactly equivalent to migrating with our initial model
 - Lailly: Migration is the first step in inversion
- We calculated a new velocity model from residuals and a synthetic shot
- We shot a new synthetic data set
- We imaged the residuals
- We repeated the exercise until model differences became negligible
- In this case the model is as good as can be expected

This kind of inversion is theoretically valid for all Earth Models.

SEG AA' FWI

We begin with a v(z) model and iterated for about 100 iterations.

Ponerama Technologies

FWI Summary

- Requires low frequencies
 - The lower the better
- Requires long offsets
 - The longer the better
- Generally gets the slow velocities
- Many iterations for fast velocity anomalies

Questions?

